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Abstract—A theory is presented to determine the rate of growth of a vapour bubble growing from a
heated wall in a liquid which is near to saturation temperature. The theory depends on approximate
assumptions derived from experiments in which thin liquid layers (microlayers) were observed to occur
under such bubbles, and in which the evaporation of the microlayers contributed significantly to the growth
of the bubbles. To simplify the analysis it is based on assumptions representative of more extreme situations
in which the microlayer predominates, extremes which have not previously been explored. The pre-
dictions of the analysis bear some relation (+ 25 per cent) to the results of experiments with various fluids
under conditions for which the assumptions are approximately valid. These predictions, with associated
limitations on the ranges of validity of the assumptions, together indicate conditions under which micro-
layers may be expected to have significant effects on bubble growth. They also have implications for
bubble departure size, at standard and reduced gravity. Water, organic liquids, cryogens and metallic
fluids are discussed.

The theory is extended to include boiling with liquid bulk temperature differing significantly from
saturation temperature.

NOMENCLATURE

R, radius of bubble;
B, group defined in equation (8); R, R, Ry, radii defined by equations (21)
C,, constantin R = C,¢"; and (22);
Cs constant in d, = C,(v,t,)*. C, T, temperature. Suffixes: b = bulk,
is taken to be 0-8; bb = bubble, sat = saturation,
Cpor Cp specific heat at constant pres- w =-wall, w0 = initial at wall,
pw sure, for liquid, vapour, wall; oo = uniform throughout;
hsg latent heat of vaporisation; t, time coordinate;
Ja, Jakob number defined as t, time for microlayer to evaporate
01Cp(Tho — T, to radius considered ;
Pu hy, ’ t,, time for bubble to grow to
k, k., thermal conductivity of liquid, radius considered ;
wall; Vi volume of bubble;
Ly L, L,  lengths defined in Appendix A; Vs volume of vapour evaporated
n, exponent in R = C,t*; from microlayer;
P, P, P, P, pressure terms defined in section
P, 21; Greek symbols
Pr,, Prandtl number for saturated 07y Olyys thermal diffusivity of liquid,
liquid ; wall;
7, radial coordinate; o, microlayer thickness. Suffix 0
Tes radius of dried out area; initial value;
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U, viscosity of saturated liquid ;

v, kinematic viscosity of saturated
liquid ;

01 P P density of saturated liquid, va-
pour, wall;

a, surface tension ;

o, group defined by equation (10);

v, property group defined by equa-
tion (11);

0r, thickness of thermal boundary
layer.

1. INTRODUCTION

THE WORK of many experimenters, summarized
in ref. [1] has produced evidence in support of
the earlier prediction that, when a liquid boils at
a heated wall, a vapour bubble growing at the
wall will in some cases leave a thin layer of
liquid (the microlayer) on the wall beneath the
bubble. An analysis of the hydrodynamics [1],
has led to a prediction for the thickness of the
microlayer in terms of the time of growth of the
bubble, and this prediction lies within +25 per
cent of the limited observations available. It has
also been shown [1] that in some cases evapo-
ration of a microlayer makes a significant
contribution to the growth of a bubble. There is
a need to “close the loop” in the sense of pro-
ducing a theory incorporating hydrodynamics
and thermodynamics to show the effect of
growth rates on microlayer formation and vice
versa. For a bubble in a given situation a step-
by-step method has been devised [1] to do this,
but it is the aim of the present paper to close the
loop by simple analytic expressions which
indicate whether a microlayer forms and whether
it has appreciable effect on the growth of a
bubble and heat transfer.

To maintain the desired analytic simplicity
while covering the wide range of conditions
under which boiling may occur, some approxi-
mate assumptions have been made. Of course, if
enough assumptions are made, any problem
can be “solved”. The aim is to make assump-
tions which are sufficiently accurate over a
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useful range. It is hoped that this aim has been
achieved here by selecting assumptions based
on approximations which are valid for the
experiments described in ref [1], in which
microlayers were observed. They are mainly
extreme assumptions, whose validity is confined
to the extreme cases in which the microlayer
predominates. However, it can be useful to
analyse such extremes and this one had not
previously been explored. Using results from
the extreme case, the analysis is continued to
deal with cases in which the microlayer does
not predominate.

Experiments reported [1-3] do not conform
strictly to the extreme assumptions, but the
results bear some relation to the predictions of
the analysis, as discussed in section 5 below.
From these predictions and the associated limi-
tations on the ranges of validity of the assump-
tions it has been possible to derive criteria for
conditions (broadly, low pressure) under which
the microlayer may be expected to have signifi-
cant effects on bubble growth. They also have
implications for bubble departure, at standard
and reduced gravity. Water, organic liquids,
cryogens and metallic fluids are discussed, but
the opportunities to compare theory and obser-
vation are limited.

2. BASIS FOR ANALYSIS

The study is primarily concerned with pool
boiling with individual bubbles growing effec-
tively in isolation in an otherwise stagnant
liquid, reaching sizes greatly in excess of the
thickness 0, of the thermal boundary layer
defined as

kl(Tw - 7;7)

™ mean heat flux

For such bubbles, heat from the thermal
boundary layer does not contribute much to
bubble growth, for reasons discussed in Appen-
dix A2. Hence the temperature distribution in
the thermal boundary layer and the (related)
waiting time between bubbles are not considered
in the primary argument. Smaller bubbles
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growing within the thermal boundary layer are
discussed at the end of Appendix A2.

The analysis is initially based on hemi-
spherical bubbles. The shape of bubbles growing
near a wall has been observed and discussed by
Johnson et al. [4] in terms of the relative
magnitude of the effects of inertia, viscosity and
surface tension. They found that the faster-
growing bubbles were nearly hemispherical
Bubbles of other shape are discussed later.

The analysis assumes the formation of a
microlayer of thickness in accordance with the
hydrodynamic argument and supporting ob-
servations reported in [1].

2.1 Definitions

If the forces of inertia and viscosity in the
vapour are negligible compared with those in
the liquid, then the pressure of the vapour in the
bubble is nearly uniform. Bubble growth is then
determined by the effect of that pressure on the
motion of the surrounding liquid. For the
purely radial motion arising with a spherical
bubble in an infinite mass of liquid with negli-
gible body forces, the “extended Rayleigh
equation” applies. It has been used by many
writers in the form which states that the pressure
in the bubble exceeds the pressure at infinity by

20
PR + 3R%) + 22 + dp
This can be combined with the equation for
conduction of heat in the liquid to deduce the
rate of growth of a bubble in an infinite super-
heated liquid [5].

In [1], Appendix D discusses the application
of these terms, respectively called P, P, P, to
the growth of a bubble near a wall. In addition
aterm P, (=(p, — p,) gR) is introduced there to
represent the effect of buoyancy due to gravi-
tational body force. Here in addition it is con-
venient to consider another term P, defined by

d
Py = (T, — Ta) (d—”T)
sat
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where (dp/dT),, is the slope of the saturation
line on the p, T chart at system pressure.

The five terms P, P, P, P,, P, cannot readily
be linked in any one equation, but their relative
sizes indicate the relative importance of the
corresponding effects. Comparison of sizes is
simple in some cases, particularly for stationary
bubbles, in which P, P, are zero, and P,, P, P,
can be evaluated. In discussions of nucleation,
the temperature of the bubble T, is assessed by
some means and compared with the saturation
temperature at the pressure in the bubble, which
is often written as

20 (dT
T it Bl
sat + R (dp)sm

Comparing this with T,, is a matter of
comparing 2¢/R (which is P;) with
(T, — T Ndp/dT),,, (which is some fraction of
P,, depending on the assessment of T,,). Simi-
larly comparison of P, and P, indicates whether
the bubble will be close to spherical shape or will
be greatly affected by gravity. Discussion of the
interaction of buoyancy and surface tension
forces leading to equilibrium or lift-off can be
in terms of P, and P,, with other factors arising
from bubble shape and contact angle.

For the present problem, the relative sizes of
all five terms are significant.

2.2 Assumptions

The bubbles of toluene on glass reported in
[1] and [6] suggested a set of assumptions
which can form the basis for establishing an
approximate analysis, leading to a prediction
for bubble growth rate. The assumptions used
can then be investigated in the light of the
analysis.

(1) During most of the growth phase for the
toluene bubbles reported in [1], the following
inequalities hold :

P,>P; P,>P; P,>P,; P,>P, (1)

For a typical inequality the ratio of the two
quantities on opposite sides was in fact of order
five, but to provide a basis for simple analysis it
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was decided to investigate the effect of assuming
that each inequality indicated a ratio of several
orders of magnitude. Instead of P, > P, etc, it
is assumed that P, > P,

(2) During most of the growth phase for the
toluene bubbles, the rate of growth of a bubble
is not very different from the rate of evaporation
of the microlayer, provided the bulk liquid is
nearly at saturation temperature. It was found
convenient to express this as:

rate of growth of bubble > rate of evaporation/
condensation on the curved surface of bubble

dv, .
or s > evaporation rate

curved
surface

@

and again the > sign is tentatively replaced by
> although again this is not fully justified for
the toluene bubble.

(3) During evaporation of the microlayer
under the toluene bubbles, the temperature of
the glass wall fell by an amount comparable
with the initial wall superheat, T,,, — T,,. How-
ever, many other combinations of fluid and wall
material will come close to one or other of the
two extreme categories: either a poorly con-
ducting liquid on a highly conducting wall, in
which case the wall temperature will remain
nearly constant during the evaporation period,
or at the other extreme a highly conducting
liquid, in which case the wall temperature will
soon fall nearly to the saturation temperature.
These two extremes are much simpler to
analyse than the intermediate case represented
by toluene on glass. The two extremes are
therefore taken as alternative bases for the
analysis, namely :

(a) Two - T;at > TwO - Tw

OTyo-Tu> Ty — T O
To collect the assumptions together:
P,> P,
1.LP;»>P; P;>P,

Pi>Pl‘
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2. % > Z (evaporation rate) 4
surface
3.either(@) T, ~ T, > T,,, — T,
or 0)T,,—T.>T, — T,
3. ANALYSIS

For the typical bubble shown in Fig 1 the
rate of growth is assumed to be of the form

Bubble surface
at time /

Bubble surface
at time /,

at time /

FiG. 1. Hemispherical bubble with microlayer.

R = C,t" as suggested by many experimenters,
and the object of this analysis is to determine
C, and n.

The initial thickness of the microlayer at
any point (radius r) is taken from [1] to be
8o = C,(v;t,)? where t, is the time for the bubble
to grow to r, ie. t,=(/C,)"" and C, is a
constant, taken to be 0-8.

If at time t the microlayer has completely
evaporated within radius r, then the volume of
vapour which has been produced by evaporation
of the microlayer up to time ¢ is

r R
v, = &{j‘ 8o2mr dr + J(éo — 8) 2nr dr} (3)
)

Py
Te

where § is the remaining thickness of microlayer
at the typical point r at time z. This can be
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derived from the equation for conduction
through the microlayer. Neglecting the thermal
capacity of the microlayer, as in ref [1], this
equation is:

do Tw_ Tsa
chfga‘t‘ = - kl__(s—"t

in which we can take T,, = T, for a highly con-
ductinz wall (assumption 3(a) above) The
equation can then be integrated to give

_ o kilToo = To)
plhfg

in which C3v;t, can be written for 63 and then ¢
and t, can be replaced respectively by (R/C,)'""
and (r/C,)!/" to give an expression for 6 in terms
of r, R and fluid properties. The ratio (r./R) can
be obtained by setting § = 0.

Substituting for é and r, in equation (5), then
integrating and collecting some terms together,
we obtain :

(6)

52 — 82 t—t) ()

Vm — 2_3n_R(2+ 1/2n)C_§3/2_” (8)
in which B involves C,, n, (T,,, — T.,) and fluid
properties, but is independent of R and C,.

But, by assumption 2 above, this must be the
same as the volume of the bubble, which is
2aR3 (a factor (1 — p,/p,) enters here if the
microlayer is counted as part of the bubble).

Hence n =} and C, = B,so R = Bt

Evaluating B with n = } we obtain

_ 2 TwO_ T;at 1
=&ty ©)
where
2 CofTo— Toa) 1
- 1 _“ Mp\7wo sat) *
¢ "[I{ + C? h;, Pr,} (10)
where

vlhfgpv pvhf
g = 2o _ Polie p,
k, P Cpl :

The quantities ¢ and  are each of dimensions
of temperature, and ¢ is a function of fluid

(11)
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properties alone. For many non-metallic liquids
boiling with typical wall superheat, we find

i Cpl(Two - Tsat) _1_

> C2 hy, Pr, (12)
Hence, taking ¢ = ¥ and writing
Ja = & Cpl(Two - Tsat)
Po hfg
2 Ja
R=———)? 1

= C, Pr, (vit) (13)
=25 Ja (vit)* (14)

Pr,

or, in terms of the thermal diffusivity of the
liquid, o,
R= 2~5%% (u)*.

The condition (12) can be shown to imply
r. < R. Equations (13) to (15) can be obtained
by integrating heat flux, taken as {k(T,,—
T.a)/0} With respect to time and base area with
r. = 0 (i.e. neglecting occurrence of dry out) and
also regarding d as constant at its initial value,
C,(vt,)t. In that integration the two latter
approximations are partially counterbalancing,
and the condition for validity is not readily
assessed.

Using assumption 3(b) above in place of 3(a),
the argument proceeds along similar lines, but
in place of equation (7) with T, assumed
constant at T,,, we take it instead that heat flow
into the microlayer is governed by the equation
for heat conduction through the wall, assuming
T, falls rapidly to T, Using [7] this gives:

d(s . kw(Two - T:sat)

(15)

h —_— =
Pt gt (o 1) (16)
which leads to
R = 2_pr(Tw0 - Tsat)p_“: awt)%
71.’% hfg pv
N 17)
ko0uCoul? (
= 1112 {20 Ja(ogt)t.
{k,p.cp, } ()
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The absence of C, from this equation may be
surprising, until it is realised that, as with the
previous case, we normally have R > r,, hence
the microlayer does not dry out except over a
small central area. Over the remaining area, the
heat flow is not affected by J,, according to
assumption 3(b).

These expressions for bubble growth can be
extended as discussed in Appendix A2 to allow
for significant evaporation from the curved
surface of the bubble as well as the microlayer.

4. COMPARISON WITH SPHERICAL BUBBLE
IN INFINITE LIQUID

The discussion so far has predicted the rate
at which a hemispherical bubble will grow in a
saturated liquid, due solely to evaporation of a
microlayer from a wall, assumed highly con-
ducting in the first instance (assumption 3(a)).
It is of interest to compare this with the rate of
growth predicted by Scriven [5] for a bubble
growing with spherical symmetry in an infinite
liquid initially at uniform temperature T,
(> T,) In principle the two cases are very
different, but nevertheless the latter has been
applied in the past to some cases of bubbles
growing at a wall, where it may now be felt that
a microlayer would be present.

For non-metallic fluids in our range of
interest, Scriven [5] arrives at the expression :-

R — 2( g)"* (T = Toa) (:C pit)?
n pv{hfg + (Cpl - va)(Too - Tsat)}
(18)
_ C,(3/m)* Pri
- {1 + (CP’ - va) (T, ~ Tsat)/hfg}

2 T, — T,
x {; ColTeo = T 1 Pr; 1*(oc,t)‘*}. (19)
CZ hfg Py

For many non-metallic fluids at normal wall
superheats the first bracket lies between 0-5 and
2:0. The second bracket differs from the ex-
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pressions for R in equations (13)}(15) only in
having T, in place of T,,,

Hence if Scriven’s expression equation (18)
above for growth of spherical bubbles in an
infinite fluid initially at temperature T, is
applied to a hemispherical bubble growing in a
fluid initially at T, on a highly conducting wall
at T, then for many non-metallic liquids,
provided T,, is written for T, the answer so
obtained is roughly similar to that obtained by
microlayer arguments in this paper, equation
(14), although the mechanism and theory are
quite different.

5. COMPARISON WITH EXPERIMENTAL
RESULTS

Many experimenters have reported observa-
tions of bubble growth rates. Of those known to
the author, a limited number from [1-3, 6] are
applicable, in the sense that the inequalities of
equation (1) hold (as single inequalities > not
>} during most of the growth phase.

It is to be expected that the toluene bubbles
of [1] and [6] are applicable, since the in-
equalities were based on them. However, there
s the difficulty that the wall temperature is
neither nearly constant at T, as required for
inequality 3(a) nor nearly constant at T, as
required for inequality 3(b). Assumption 3(a) is
adopted, using for T,,a mean value of T,, based
on averaging the observed value of (T, — T,)
throughout the growth period and across the
base area of the bubble. The prediction of
equation (14) is then within +25 per cent of the
observed growth of the bubble.

Some bubbles reported in [3] are applicable,
provided again the wall temperature can be
assessed. The wall in these experiments was a
thin strip of zirconium, 0-25 mm thick. For
organic liquids, zirconium acts as a highly
conducting wall, so assumption 3(a) applies, but
the finite thickness will affect heat flow after a
time of the order of (thickness)?/a, which is
approximately 5 ms. Hence the wall temperature
is taken to be constant at its reported value, for
growth periods of up to 5 ms.
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For all applicable bubbles from [1], {3] and
[6] bubble growth is well represented by R oc t*.
Experiment and theory are therefore con-
veniently compared in Fig. 2, which shows the
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FiG. 2. Comparison of observed and predicted values of

(radius)/(time)* @—toluene [6]; A—acetone [3]; C—

carbon tetrachloride [3]; M-—methanol [3]; P—n-pentane
[3]; T—toluene [3].

observed value of (radius)/(time)* in m/s? for
the parabola of best fit during the growth phase,
plotted linearly as ordinate against the theo-
retical value of (radius)/(time)? derived from
equation (14). Where several bubbles are re-
ported under nominally identical conditions,
Fig. 2 shows the range of values of R/t* observed.
These graphs could have been presented in
dimensionless form by dividing by either v} or
of but there seems no clear reason for choosing
one or the other.

The points in Fig. 2 derived from [6] lie close
to the 45° line. The points from [3] lie typically
some 25 per cent below that line. However, in
[3] the authors give an equivalent bubble
diameter, determined by a method (discussed
in appendix B below), which suits their aims, but
would lead to an underestimate of radius if the
bubble were hemispherical. The extent of the
underestimate depends on the shape of the
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bubble, and that changes during growth, but in
early stages it is likely to be of the order of 30
or 60 per cent. Increasing their results by 45
per cent would bring them closer to the 45° line,
then in most cases the 45° line would lie within
the scatter among results in [ 3] under nominally
identical conditions. Exceptions to this occur
with the slower growing bubbles, possibly
because they were also small, and the thermal
boundary layer might have an effect, as discussed
in Appendix A2.

In view of the extreme assumptions and the
difficulty in determining T, this agreement is
regarded as satisfactory, at least for the main
purpose of the present work, which is to provide
a basis for assessing circumstances in which the
microlayer is or is not important. The assessment
proceeds partly by re-consideration of the
underlying assumptions, and introducing further
comparison with experiment, for bubbles classed
as inapplicable above.

6. RE-CONSIDERATION OF ASSUMPTIONS
6.1. Analysis

The assumptions 1-3 of equation (4) can now
be re-cast in more convenient form. Details of
the algebra are given in appendixes Al-A3
respectively, but results can be summarised as
follows:

(1) For assumptions 1 expressions for R, R
can be derived from equation (9), expressed in
terms of R by use of equation (9) and substituted
into P; etc.

(2) For assumption 2 an expression is de-
veloped in Appendix A2 for the growth of a
bubble due to the two mechanisms of evapora-
tion of microlayer and evaporation at the curved
surface provided the bubble radius is much
greater than #,. From this a condition is
deduced that the former mechanism predomi-
nates.

(3) For assumptions 3(a) and (b) expressions
for the fall in T,, can be compared with (T, —
T.).
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If assumption 3(a) is adopted, the complete
set of assumptions can be expressed in terms of
(T,,0 — T, as follows:

Two - Tsat
{cz}* {R F‘ Two— T, Cob
1. == —r P

2 Ld C2¢ TwG - Tsar
C,p
Two - Tsat

C,¢
2 Twa - Tsat
3(a) Too — Toar

where the characteristic lengths L, L, L,
involve only the properties of the fluid and the
local gravitational acceleration g, as defined in
Appendix A. As noted earlier, (T,,, — T,,,)/¢ =
Ja/Pr.

Corresponding expressions which apply when
assumption 3(b) is used in place of 3(a) can be
derived similarly.

In this form the assumptions can be shown
graphically as defining regions on a chart of
system pressure against initial wall superheat
(T,o — T,) for any given bubble radius R and
any fluid-—wall combination and bulk tempera-
ture. This is done in Fig. 3 for R = 1 mm for
water boiling on copper at bulk subcooling

R <
T, T,

0~ lsar

: R
w at < :
C,¢ }

Qe

R <

13 degC. The conditions are all met in the
cross-hatched region. In the shaded region
above and to the left of this, the condition
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P, > P, fails. Below and to the right of the
region, the conditions

(20)

> Cy(3/n)} Pri| Ty — T

hy, kipiCo
> 3,.-[!_1_ P
Cpl kwpwcpw

P£>Ps
P> P,

fail. Further below the other conditions fail.

For different values of R the regions lie in
different positions. The positions are easily
established, but the figure becomes complicated,
making this an inconvenient method of visua-
lising the problem. Instead it is more convenient
to re-cast again the conditions principally in-
volved, namely :

. Pi > Ps
Fa> P p>p,
in the form:
L, {M}“ ]
Cy¢
L (21)
TwO - ’I;at 3
) |
or
Ry<R; R<Rs (22)

R <R,
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100 TRz

g5, > P
i P>
2> F
‘:_; 10— Z
) N iw TAR
; “A el
',‘ dp  dvm
2 o Car
|_
0-1 [ | | | ] |
To-m ol | 10 100

Triple point

Pressure, otm

Critical pressure

FiG. 3. Graphical representation of equation (20) for water boiling on copper, with bulk subcooling less
than 1-3 degC. All inequalities hold (> not > ) inside cross-hatched area, with R = 1 mm.

which can readily be applied to any specified
fluid and operating pressure and wall tempera-
ture.

6.2 Consideration of inequalities in terms of
Rdia Ris’ Rig
The inequality R, € R is equivalent to
P,> P,

d . .
or (T~ T (5-’;) > p(RR +3R?)
sat

v ... AT
or (T, - T,) > pRR + 3R?) (a—>
sat

implying that the change in saturation tempera-
ture due to inertia stresses is much less than the
wall superheat. This is necessary if the tempera-
ture at the top of the microlayer (T;,) is to be
put equal to T, If the inequality fails, then the
temperature of saturated vapour at the pressure
in the bubble is appreciably greater than T, so
T, is appreciably greater than T, so con-
duction of heat through the microlayer is
reduced and bubble growth is slowed.

The inequality inevitably fails when the bubble
is very small, but for many cases (including
those reported in Fig. 2) R,; is small compared
with the maximum radius of the bubble, so
the inequality holds (> if not >) during most
of the time the bubble is growing. The effect of
early failure appears to be slight, possibly
because R,; is of order 6 ; hence the early reduc-
tion in growth rate is partly counterbalanced by
evaporation due to the superheat in the thermal
boundary layer, as discussed in Appendix A2.

For some cases reported in [3] Ry; is several
mm, which is an appreciable fraction of the
maximum radius of the bubble and well in
excess of 8. For those cases the present theory
implies that bubble growth is slowed for an
appreciable part of the growth period. Never-
theless, it still seems that a microlayer will form,
although the equations governing its evapora-
tion will be different. A partial analysis is given
in Appendix B, and that predicts a linear growth,
with R oc t. A few experimental observations
are available, permitting comparison subject to
reservations discussed in Appendix B. As shown
there, the comparison is promising.
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The inequality R < R,, is equivalent to
P, > P, implying that inertia stresses greatly
exceed the stress due to surface tension (26/R).
The inequality fails in due course as a bubble
grows, then surface tension stresses predominate
over inertia stresses and the bubble tends to
round off towards spherical shape, from its
original hemispherical shape. It may seem
strange that surface tension should emerge as
the predominant force when the bubble grows,
since P, is in fact falling (as R~ !). However, P; is
falling faster (as R™?) so P, eventually pre-
dominates. Matters are complex, but from
photographs in [2] and [3] it appears that even
when the radius is well in excess of R, the bubble
still has an appreciable area of flat base in
contact with the wall. Nevertheless, the rate of
growth of that base radius is much below the
rate implied by the theory above, hence the
microlayer is presumably thicker and of smaller
plan area. Both of these changes will reduce the
contribution of the microlayer to bubble growth
beyond R,

This case is illustrated by one set of bubbles
from [2] and two from [3], for each of which
R, lies between 0-3 and 0-4 mm. The observed
growth curves are reproduced as Figs. 4(a), (b),
(c), on each of which the prediction of equation

Equation (14)
X x
20 X
X
X
X
N ISE »
3 o ©
x o o ©
- o)
Nm fe)
3 10 x ]
©
& o
x
o
05
(@
] ! ] | ]
] 2 4 6 8 10
Time, ms
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X w X
o~
€
E
o
(2]
2
©
=]
4
1
10
X
a4
x
o
E
13 3 x
o~ i X
w
2 Equation(l4)
3
[+4 2r x o
o
x o]
e}
X
- o
X o
e}
c
/ (©)
© | ! I 1 ]
o] 2 4 6 8 10
Time, ms

Fi1G. 4. Observed growth rates compared with equation (14)

for bubbles having R;; 0-3 mm to 0-4 mm. (a) Water at 1 atm

[2], (b) n-pentane at 0-69 atm [3]; (c) methanol at 0-52 atm

[3]. Scatter among nominally identical tests is indicated
by x (maximum) O (minimum).

(14) is also shown. The first few frames of each
cine film are very significant, and as far as can be
judged from them, the growth in Figs. 4a) and
(b) is initially in accordance with equation (14),
up to a radius a few times R, after which there
is a marked change to a slower growth, bearing
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no relation to equation (14). In Fig. 4(c) growth
is in accordance with equation (14) for a much
longer time, suggesting that some other factor
may be significant.

The rounding off which follows when R
exceeds R;; may also lead to a tendency for the
bubble to lift off the wall, a tendency which is
absent if the bubble remains hemispherical.
(section 5-5 of [1]). This tendency will be opposed
by the action of thermocapillarity, according to
[8]. Consideration of R, may therefore provide
a criterion for bubble departure, even in the
absence of gravitational effects, and this is
discussed below (section 6.3).

In some cases (broadly, at high pressure) R,
is very small, of the order of 107® m. At such
small sizes the bubble is usually deep in a
thermal boundary layer. Its growth is thus much
influenced by superheat in the surrounding
liquid causing evaporation at the curved surface
in addition to evaporation of the microlayer.
The matter is discussed in Appendix A2, where
it is shown that, while R < 6, growth rate is
substantially faster than that used to establish
equation (22). Since R, oc (growth rate)* this
suggests that a bubble deep in the thermal
boundary layer will not round off until R greatly
exceeds R, as determined from equation (22).
However, after the bubble has grown well
through the thermal boundary layer and evapo-
ration from the curved surface has fallen off,
then microlayer evaporation is not fast enough
to prevent the bubble from rounding off. Hence
the growth and final size of such bubbles will be
determined more by the thickness of the thermal
boundary layer.

The way in which bubbles round off during
growth has been reported and discussed by
earlier experimenters, often in terms of variation
of the apparent contact angle at the apparent
triple interface where the outer edge of the
bubble appears to meet the wall. If a microlayer
is present, this is not a true triple interface, but
an apparent “corner” on the bubble at the outer
edge of the microlayer. However, some equations
which have been used, such as force balances

based on surface tension and contact angle, can
still be applied, provided it is recognised that the
force is not acting directly on the wall but is
instead transmitted to the wall by local variation
of fluid stress near the “corner”.

The inequality R < R, is equivalent to P; >
P, implying that inertia stresses greatly exceed
the hydrostatic head due to one bubble radius
(pgR). The inequality fails in due course as a
bubble grows, and buoyancy forces then become
significant compared with inertia stresses, so
there is a tendency for the bubble to move off.
Nevertheless, to judge from data in [3], that
failure does not cause any immediate change in
growth pattern. Instead the radius continues to
grow in accordance with equation (14) until it is
several times R,

6.3 Bubble departure

Consideration of R;,, R, in section 6.2 above
suggests that as the radius grows beyond either
of these values there is an increasing tendency
for the bubble to depart. If the smaller of R, R,
is less than the thickness 6, of the thermal
boundary layer, then as discussed in 6.2 above
and in Appendix A2, the theory leading to R, R,
fails, and must be replaced by one allowing for
the thermal boundary layer. In that, 6 is likely
to emerge as the stronger influence on bubble
growth and final size.

Many experimenters have reported on the
boiling of water, giving the sizes of the bubbles
of steam as they leave the heater surface.
Summaries have been prepared by Cole [9]
and by Cole and Shulman [10], plotting
departure size against, for example, system
pressure irrespective of other conditions such as
wall superheat. Such graphs show a trend,
broadly (pressure)™" with n = 0:6 or 10 and a
wide scatter band. The values of R, and R,
from Table 1 (whichever is the smaller) for
pressures of 01 and 1-0 atm and wall superheat
10°C are consistent with the trend and within
the scatter band, but at pressures above 1 atm
the observed bubble sizes greatly exceed the
smaller of R, R,, suggesting again that other
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Table 1. Values of Ry, R, Ry for saturated boiling, equation (22)

. Pressure T, — T, R Ry R,
Fluid (atm)  (degC)  (mm) (mm)  (mm)
Toluene 01 20 070 804 79
Water 0-1 10 2:5 229 15
Water 10 10 0-03 0-30 1-55
Water 100 10 0-0003 0-003 011
Oxygen 0-0015 5 259 104 364
Oxygen 10 5 00012 0-003 0-19
Nitrogen 0124 5 0-042 0-85 1-34
Nitrogen 10 5 0-0008 0002 017
Helium 005 5 0073 474 584
Helium 10 5 0-0003 018 032
Hydrogen 007 5 0-061 10-19 372
Hydrogen 10 5 00002 0-002 023
Acetone 029 272 0-13 141 44
Carbon tetrachloride 018 289 0-15 10-5 326
n-Pentane 10 172 0-003 002 046
n-Pentane 071 277 0012 0-39 12
Methanol 0-523 200 0016 0-31 1-19
Methanol 040 200 0-029 0-75 161
Methanot 027 267 010 818 358

mechanisms are involved, possibly involving 0,
or thermocapillarity. The dynamics of bubble
growth and departure are complex, and the
main contribution of the present paper to this
problem is to suggest that at low pressures the
microlayer may be one of the factors. Further
study involving reduced gravity may help to
clarify problems of bubble dynamics and the
microlayer. Conversely, consideration of R
and R, may throw light on the reported experi-
ments showing that heat flux in nucleate
boiling is nearly independent of gravity in some
cases, [ 11, 12]. Where low pressure is combined
with low gravity, as in some space applications,
R;; and R, may both be very large, so an
understanding of the microlayer may be very
important.

7. SUMMARY AND APPLICATION TO
PARTICULAR FLUIDS
7.1 Non-metallic fluids
For saturation boiling from a highly con-
ducting wall, the range of applicability of the
present theory is indicated by the values of
R, Ri R, and these are tabulated in Table 1

for some fluids and conditions of interest. All
fluids differ in detail, and wall superheat is an
important factor, but it can be seen that the
required conditions (broadly R;; < 0-3 mm, and
R,, R, each > 5 mm) are generally obtained
with the non-metallic fluids listed when the
pressure is between 0-1 and 05 atm. Because
many industrial applications involve boiling of
water at pressures well above 1 atm, Table 1
includes values for water at 10 atm. T : value
of R is then very small (3 x 107°m) and this
suggests that, as discussed in section 6.2, the
bubble will tend to round off at small size, a
few times 0. Hence for water at more than
about 1 atm, the thermal boundary layer has
greater effect on bubble growth than microlayer
phenomena. Table 1 also shows data for boiling
of cryogens at atmospheric pressure and 5°C
wall superheat, when R;; is generally small,
indicating again that the bubbles will tend to
round off at small sizes. Data are also included
for boiling of cryogens near the triple points
(precise properties at the triple points could not
be located in all cases) Where triple point
pressure is well below 1 atm, it seems that
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microlayer phenomena can be significant. For
nitrogen the triple point is at about 1/8 atm, so
boiling cannot be strongly dependent on micro-
layer phenomena. For carbon dioxide the triple
point is at 5-1 atm, and microlayer phenomena
cannot become significant.

For subcooled boiling from a highly con-
ducting wall, the effect of conduction to the bulk
liquid will complicate the picture, though it can
still be analysed as discussed in Appendix A2.
It is shown there that such conduction has
little effect if expression 2 of equation (20) holds.
When this is evaluated for the same fluids, with
Pr, = 6, it requires

|T;at - ’Tb| < 05 (TWO - T;at)
so bulk subcooling is to be well below wall
superheat. This is often met, and the earlier
paragraph then applies.

For saturation boiling from a moderately
conducting wall, the effect of falling wall
temperature will complicate the picture, de-
pending on the ratio of the values of the product
(kpC,) for liquid and wall, as shown by ex-
pression 3 of equation (20). Water has a com-
paratively high value of (kpC,), so the complica-
tion arises unless the wall is a very good con-
ductor like copper, hence Fig. 3 was calculated
for copper. For the other non-metallic fluids
discussed, (kpC,) is lower by a factor 6 or more,
so other metals such as mild steel are sufficiently
highly conducting for the simple theory to apply.
At the other extreme, with water boiling on
glass, the analysis should be based on assump-
tion 3(b) and equation (17).

The present theory is thus relevant to many
boiling situations at sub-atmospheric pressure.
Some de-salination plants involve boiling at
such pressures, but usually from a flowing
stream not from a heated wall. Some situations
of cryogens boiling in space vehicles may be
applicable.

7.2 Metallic liquids
In studying boiling of metallic liquids such as

sodium there are obvious experimental diffi-
culties, and no data seem to be available on
bubble growth or surface temperature. However,
the hydrodynamic arguments of [1] leading to
initial microlayer thickness &, = C,(v;t,)* should
still be applicable, if the manner of growth of
the bubbles were known. In the thermodynamic
arguments of the present paper, assumption 3(b)
must be substituted for 3(a), leading to equation
(17). The form of assumption 2 then differs from
that in equation (20) and will seldom be met, as
it places a close restriction on the subcooling or
superheating permitted in the liquid around the
bubble. Such a restriction is particularly un-
realistic in view of the thick thermal boundary
layers encountered with sodium. These difficul-
ties reflect the fact that, although a microlayer
may form, it will not be so important for heat
transfer with sodium as it is for the cases con-
sidered earlier which involved less conducting
liquids on fairly well conducting walls. For
those cases, any microlayer constituted an area
where heat was transferred rapidly from the
wall, at a rate often greatly exceeding that for
transfer across the curved surface of the bubble.
For the sodium, by contrast, the heat flow across
the curved surface of the bubble will be of the
same order as that through the microlayer,
assuming the sodium and wall both have
similar conductivity and initial superheat. The
microlayer is therefore unlikely to cause more
than a fractional increase in heat flow.

8. CONCLUSIONS

For many non-metallic fluids boiling from a
heated wall at pressures well below 1 atmosphere,
the assumptions listed in equation (4) will be
valid during much of the growth period. In that
case a microlayer can be expected to form and
virtually dominate later stages of growth of
bubbles, when the radius greatly exceeds 8, and
growth continues in accordance with:

—;Ti‘(v,t)* = 2-51{—:(v,t)*. (14)
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Limitations to the validity of the assumptions
are summarized in Table 1 and equation (22).
For boiling at higher pressures the microlayer
may still occur, making contributions to bubble
growth and heat transfer, but the microlayer
will not on its own cause the bubble radius to
grow much beyond 8.

The expressions derived by Scriven [5] for
bubble growth in an infinite liquid initially at
uniform temperature T, gives answers numeric-
ally similar to the above expression if T, is put
equal to T,, The physical situations, theory
and analysis are all very different, but this
numerical similarity is noteworthy because ex-
pressions such as Scriven’s have been used by
others with moderate success in theories pre-
dicting bubble growth without allowing for the
microlayer although it now seems that micro-
layers were present in some cases.

A bubble growing at a wall in a liquid which
is not at saturation temperature will be affected
by microlayer evaporation and evaporation
(condensation) at the curved surface. The net
growth is predicted by adding the radial growth
(collapse) rates appropriate to the two separate
mechanisms.

The contribution of the microlayer to the
growth pattern may affect departure of the
bubble, because

(1) As the bubble grows beyond R surface
tension forces have increasing influence, tending
to make the bubble adopt a spherical shape,
which may introduce dynamic forces tending to
take the bubble away from the wall.

(2) As the bubble grows beyond R, (in normal
gravity) gravitational body forces have in-
creasing influence, tending to take the bubble
from the wall.

Other influences are apparently involved (such
as thermocapillarity) tending to affect bubble
departure, or prevent it, particularly for small
bubbles at high pressures.

With metallic fluids, microlayers may occur,
but their effect on bubble growth will be less
important.

M. G. COOPER
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APPENDIX Al

[38)

To Develop Expression 1 of Equation (20)
The five pressure terms P,, P, P, P,, P, are

dp\ | 3p2y. 20
(Two - Tsat) (a‘?)smﬂ p(RR + IR )5 R s

R
(o — P gR; 4/"1_R"
Using R = C,t* we have
R = 1C,/t* = C2/2R and R = —C, /4%
= —C*%4R?
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hence
pCt c?
Pi=§R—;;Pv= 2#1R_;~
Substituting
2 - T,
C, = ——@———“‘Qv? and(T,, — T,,) = AT
C, ¢

and using the Clausius—Clapeyron relation to
give

h raPiPv

<§P_> = = vk,
dT sat Tsat(p [ pv)

" T.v

sat¥l

(o, > p,)

the five pressure terms are respectively

ATyk, 2pp? <AT )4. 26

Tav’ R* \C,¢ "R’

8y, (AT \?
(o1 — Pu)gR,‘R—z C,0

and the inequalities of equation (1) are res-

pectively

{AT }4 s R

Cé pvi
Co9YkR? JAT}f, AT }" 5, (o1 =P gR®
2Tapi¥i lcz(b " |Cad 2ppt

2
x>
2

which reduce to the form given in equation (20)
if we define

L = {Pt"l3 Tsat}* = {Pt"? Tsat}* - {kax"thar}*
4 DYk, ’ ‘l’z_kl pohsy

2
_ P
o

L

2 £

(01~ po)yg
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APPENDIX A2
Evaporation from Microlayer and From Curved
Surface

Basis—neglect of thermal boundary layer

In some theories of bubble growth the con-
duction of heat from the thermal boundary
layer to the curved surface of the bubble is
taken to be a major or sole factor causing
evaporation. In their simplest form the theories
regard the thermal boundary layer as being
bodily displaced to surround the curved surface
of the bubble (Fig. 5(a)) and then assess the rate

e

(a) (b}

FG. 5. (a) Bubble surrounded by thermal boundary layer.
(b) Bubble growing far beyond thermal boundary layer.

of conduction of heat to the interface. Such
theories may be appropriate if the bubble radius
never grows much beyond 8 (Fig. 5(a)) but they
are considered inappropriate for bubbles which
grow to some 10 or 100 6, (Fig. 5(b)). When a
bubble grows greatly beyond 6, the liquid in
the thermal boundary layer is not added to that
around the curved surface. Instead it is dis-
placed radially as shown by the arrows in
Fig. 5(b). Also, the layer of hot liquid which
surrounded the bubble as it grew past 6
(Fig. 5(a)) must have been subsequently thinned
out by being spread over a larger bubble
surface. More rigorous analyses [13], [14]
allow for these combined effects of liquid
motion and thermal conduction, but they
ignore the microlayer. The ultimate aim will be
the further integration of those theories with
microlayer evaporation, but here, as elsewhere
in this paper, the analysis is largely confined to
an extreme case, for simplicity. Here it is
assumed that the bubble radius grows far in
excess of 07, hence heat conduction differs little
from that occurring in a liquid initially at
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uniform temperature T;. Analysis thus neglects
the thermal boundary layer, but allows for
evaporation from the microlayer and evapora-
tion or condensation at the curved surface of
the bubble.

A final paragraph in this appendix considers
the growth of a bubble while its radius is small
compared with 0.

Analysis

If a bubble grew at rate R = C,t* due solely
to evaporation at its curved surface when
immersed in liquid initially at uniform tempera-
ture T, then from equations (11), (12), 19)

R et

hence

T. - T, = C, szw {cz < ) Pr?}—l.

If instead the bulk temperature is 7, but the
bubble radius nevertheless grows at the same
rate C,t* then the fluid motion is unchanged
(provided p, < p;) so heat flow and vapour
production are changed by factor (T, — T,,)/
(T, — T.,) so the volume of vapour caused by
evaporation at the curved surface while the
bubble grows to radius R is

T;, —

Tat 2
—2 %% 27R3 on each hemisphere
Too - ’rsat P

“eie() mHET

If a hemispherical bubble grew at rate
R = C,t* due solely to microlayer evaporation
with wall temperature T,,, then from equations

9). (12)

Tt )

X 3'7'CR3.

2T, —

sat
=& vt
hence
Coy
T, -~ T, = C, =2,
w sat 1 ZV?
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If instead the wall temperature is T,,, but the
bubble radius nevertheless grows at the same
rate C,t* then the fluid motion is unchanged
(provided p, < p;) so the microlayer is formed
with the same initial thickness d,. The argu-
ments of equations (6), (7) and (8) still apply, and
hence from equation (8) with n= 3 and B
substituted the volume of vapour evaporated
from the microlayer is

2 T, T.. v
V R3 w0 sat__}
e e

and again ¢ = .

For a hemispherical bubble to grow at rate
R = C,t* due to the combined effects of the
two mechanisms, namely evaporation at its
curved surface from initial bulk temperature T,
and evaporation from the microlayer on a wall
at temperature T,,,, we must have:

+ 2
= 0] ) (55

2
x 27R3 + ( Two Toa ?).%ﬂ:R3
C\C,
hence
2T, - ’I;a 1
ei={e. G 4 (&257)
+ 3_ TwO - T.;at Vi
C, ¥
or

3 * 2T, - ’I.;ar 1) .4
R={o (i) e} (GRS )

2 T~ T .
+ (___ w0 sat Vf) [é
C ¥

showing that the radial growth rates (not the
volumetric rates) are added. If the second term
in this equation is much larger than the first,
then growth is largely due to evaporation of the
microlayer. This yields condition 2 of equation
(20).

This equation also shows that the expressions
derived in this paper for saturation boiling
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(T, = T, can be used for cases in which the
two mechanisms are both operating, provided

[Two — T + {C:(3/mPPri} (T, — Tl is
written in place of (T, — Tiu).
Effect of Thermal Boundary Layer on
Small Bubbles

Very early in the growth of a bubbile its radius
is small compared with 6, and its lifetime is
short compared with 6%/a, (typically 0-1 mm,
0-1 sec for the experiments discussed here).
These facts imply respectively that the bubble is
deep in the thermal boundary layer, where the
temperature of the liquid is nearly T,,, and that
the presence of cooler liquid beyond is hardly
felt. Hence in the limit of very small size, growth
occurs under the combined influence of micro-
layer evaporation and growth in a superheated
liquid which has effectively uniform initial
temperature T,,,. Writing T, = T, in the above
equation gives:

R = {1 + C, (3) Pr?} C2 T—wzsi‘(v,t)’f
2

= (1 + 078 Pr}) 2~5£(v,t)*.
Pr,

Few data are available for the very small sizes
involved, but [15] reports experiments with
liquid nitrogen boiling at a heated surface, and
gives some data points for bubbles of radius less
than 20, The initial growth rate is some 1-4
times the rate predicted for growth in a uniformly
superheated liquid at T, This is some 209
below the rate predicted by the equation above,
suggesting that the two mechanisms are both
operating, though not to the extent indicated by
taking T, =

‘APPENDIX A3
To Develop Expression 3 of Equation (20)
Integrating equation (6) we obtain

83 — 6% =

2%, j (T, — T dt
plhfgt
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and we require the condition that the ntegral can
be adequately approximated by (T, — T, Xt — t,)
fort, <t <t,.

However high the conductivity of the wall,
T,, must clearly fall towards T, at the end of
the evaporation period. However, the approxi-
mation will be adequate provided T, is close to
T,o for most of the evaporation period. Say
(T,,o — T,) < (T, — T, for 959, of the evap-
oration period. If that is so, then equation (7)
applies for most of the evaporation period.
Substituting 63 = C3v¢, in that, and noting

that § = 0 when ¢ = ¢, we find
2k %
o= { ~(Two — Toad) (tc — t)} :

lhf 9
Hence the heat flux can be adequately approxi-
mated during 95 per cent of the evaporation
period by

kT~ T) _ K
S (t, — 0}
where K = {%klplhfg(Two Tsat)}%‘
But if such a heat flux is withdrawn from a

semi-infinite body initially at uniform tempera-
ture, then from [ 7] the wall temperature falls by

dt
te —(t—r)]*r’i '

(nkwpwcpw) j‘

Neglecting t, compared with ¢, we apply this
expression and note that the integral can be
evaluated and is

2log [{to/t. — 0}* + {e/t. — 0}*]
which has a singularity at t = ¢,, corresponding
to the end of evaporation. Discarding the last
5 per cent of the evaporation period as discussed
earlier, t = 095¢, and the integral is 4-36.

The required condition can therefore be
expressed as
x 436 < (T, — T,

sat)-

(kP C )
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Substituting for K, re-arranging and writing
4-36%/(2n) = 3 yields 3(a) of equation (20).

APPENDIX B
Failure of the Condition P; > P,

If (T,0 — Ty,)(dp/dT),, is not greatly in
excess of p{RR + 3R?) with R = C,t? then the
pressure p, in the bubble differs significantly
from system pressure, and the analysis given
above must be discarded because it was based
on taking the temperature at the top of the
microlayer to be T,,. An opposite extreme would
be to take the temperature in the bubble to be
equal to T,, hence the pressure in the bubble
would exceed the system pressure by (T, — T,,,)
(dp/dT),, and the growth of the bubble would
be governed by

d
PARR + 380) = (T, — T ()

vapour being supplied by microlayer evapora-
tion at the rate necessary to cause this growth.
If further the wall temperature is nearly constant
at T, then

P
RR +3R? =24
2
which integrates to
R?— 2_?2 constant
3p, R?

The constant of integration could be determined
if initial values of R, R were available. It must
apparently be zero if there is to be no singularity
in R for small values of R. The position is
obscure and depends on the conditions of
initiation of the bubble. Whatever the value of
the constant, the term falls as R 3. This suggests
{but does not prove) that when R exceeds its
initial value by an order of magnitude we can

write
(o) )
pl d T sat.

until in due course the temperature drop across
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the microlayer becomes significant so p, is no
longer governed by T,, and the situation is
closer to that summarised in equation (1).

The toluene bubbles reported in [1] and [6]
are not suited to this problem, as they soon
grew past this phase (R, typically less than
1 mm). Some bubbles are reported in [3] with
water at 50 mm pressure for which R,; is 16 mm,
suggesting that the theory above should apply.
Due to the characteristics of the heater, a strip
of zirconium 0-25 mm thick and 12-7 mm wide,
some reservations arise:

(1) The thermal conductivity of zirconium is
too low for the surface temperature to be
regarded as constant throughout the growth
period.

(2) The thickness of the strip is too low for it
to be regarded as a semi infinite body for more
than a few ms.

(3) The width of the strip is too small for the
bubbles to grow symmetrically beyond a few
mm diameter. This was observed by the authors
of [3] who allowed for it for their purpose by
defining an equivalent diameter D, assuming
the bubble to be a prolate ellipsoid. If their
method of determining D, is applied to a
hemispherical bubble, it will yield

D,=RJY2

By confining attention to the first 5 ms of
bubble growth, reservations 1 and 2 above are
largely avoided. Further, the bubble is then
small and unlikely to be distorted by the finite
width of the strip, so it is assumed that the
bubble is nearly hemispherical and the bubble
diameter D, quoted in [3] is in fact about R.Y2.
In that case the prediction is that the bubble
will at first grow linearly with

d 3, 2 TwO - T.;at dp *
Sy=21{2 sa (OP) U 28 mys.
a )= {3 (@) f e

Comparison with the three such bubbles
reported in [3] relies on some 5 or 7 frames of
each cine film. As far as can be judged from
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these, the bubbles do grow linearly for the first In view of the many extreme assumptions
5 or 7 ms, at rates in the range: underlying the theory, this agreement with one
d set of three experimental results is not con-
18 < —(D) < 26m/s. clusive, and may be fortuitous, but it seems

dt interesting,

Résumé—On présente une théorie afin de détermine la vitesse de croissanc d’une bulle de vapeur grossissant
A partir d’une paroi chauffée dans un liquide qui est voisin de la température de saturation. La théorie
des hypothéses approchées obtenues a partir des expériences dans lesquelles on o observa que des couches
liquides minces (microcouches) se trouvaient sous de telles bulles, et dans lesquelles I’évaporation des
microcouches contribuait de fagon importante i la croissance des bulles. Pour simplifier ’analyse, on
I'a fondée sur des hypothéses représentatives de situations plus extrémes qui n’ont pas été explorées
auparavant. Les prévisions de la théorie ont une certaine relation (425 pour cent) avec les résultats des
expériences pour divers fluides sous des conditions telles que les hypothéses soient valables de fagon
approchée. Ces prévisions, en méme temps que des limitations associées aux gammes de validité des
hypothéses, indiquent ies conditions sous lesquelles on peut s’attendre a ce que les microcouches aient des
effets importants sur la croissance des bulles. Elles ont aussi des conséquences sur la taille de départ des
bulles, pour une gravité standard et réduite. On a discuté les cas de I’eau, des liquides organiques, des
fluides.métalliques et cryogéniques.

La théorie est étndue pour y inclure I’ébullition avec une température moyenne du liquide différant de

fagon importante de la température de saturation.

Zusammenfassung—Zur Bestimmung der Wachstumsrate einer Dampfblase, die an einer beheizten Wand
in einer Fliissigkeit mit anndhernd Sattigungstemperatur entsteht, wird eine Theorie aufgestellt. Die
Theorie stiitzt sich auf Niherungsannahmen, die aus Versuchen stammen, bei denen das Auftreten diinner
Fliissigkeitsschichten (Mikroschichten) unter solchen Blasen beobachtet wurde und bei denen die Verdamp-
fung der Mikroschichten massgeblich zum Wachstum der Blasen beitragt. Zur Vereinfachung basiert die
Betrachtung auf Annahmen, die fiir extremere Zusténde typisch sind bei denen die Mikroschicht vor-
herrscht, Extreme die bisher noch nicht erforscht worden sind. Die Voraussagen lassen sich mit einiger
Berechtigung ( +25 Prozent) auf die experimentellen Ergebnisse fiir verschiedene Fliissigkeite bei welchen
die Annahmen annihernd giiltig sind, anwenden. Diese Voraussagen zusammen mit den aufgefithrien
Einschrinkungen des Giiltigkeitsbereiches der Annahmen weisen auf die Bedingungen hind unter denen
erwartet werden kann, dass die Mikroschichten einen bedeutenden Einfluss auf das Blasenwachstum
haben. Es ergeben sich daraus auch Folgerungen fiir die Blasenabreissgrosse bei normalem und reduziertem
Schwerefeld. Es werden Wasser, organische Fliissigkeiten, Kéitemittel und fliissige Metalle untersucht.

Die Theorie ist erweitert worden, um das Sieden bei Flissigkeitstemperaturen zu erfassen, die sich

wesentlich von der Sattigungstemperatur unterscheiden.

Annoranua—IIpeioxena Teopua ONpefeJeHMA CKOPOCTH pOCTa HYySBIPbKA Mapa Ha Ha-
rpeBaemMoil CTEHKe B MUJKOCTH, TEMOEPATYPa KOTOPON GIM3KA K TeMIepaType HACHILEHHA.
Ona ocHOBBIBAeTCA HA NPUOIMIKEHHBIX MONYIIEHMAX, IIONYYEHHBIX BKCIIEPUMEHTAJIbHEIM
IYTeM, KOTAA DO TAKMMU NY3HPbKAMM HAGMIORAIMCH TOHKHUE CIOM KMIKOCTH (MUKDOCION)
W KOTZa MHCIIAapeHMe MHKPOCJIOEB 3HAYUTENLHO CHOCOOCTBOBANO DPOCTY My3HpbLHOB. A
YIpOLIeHUA aHadu3a Gpaiich [ONYIUIEHHA, XapaKTepHble NJIA BKCTPEMAJbHEIX CHTyaLuit,
KOP/[3 HOMHHUPYeT MMKpPOCJOH. DTH ClOyyal paHee MCCIEeROBAHH He OHIIM. AHAMMTHYECKMe
pacyeTsl JAl0T HeKOTOpoe coBajenue ( +25 %) ¢ pesynbpraTaMy SKCIEPHIMEHTOB ¢ PA3IMYHBIMUI
JHUKOCTAMM, A KOTOPHX STU NONYUIEHMH SBIAKTCA NPUOIMMKEHHO CNpaBeiIMBHIMMU.
AHAJMTHYECKHNE PACYETH U CBA3AHHBIE ¢ HMMM OTPAHMYEHMA O AUANA30HAX CHPABEIIMBOCTH
AONYIIEHUIT TOKASHIBAIOT, NIPY KAKUX YCIOBUAX MUKDOCJIOM MOTYT OKA3HIBATH 3HAUMTENbHOE
BIMAHME Ha PocT ny3sipell. OHM TaKKe OKAsBIBAIOT BINAHME HA pa3Mep NMy3HPbKA BO BpeMs
OTPHIBA NpU OOBLIYHBIX ¥ HOHUEHHBIX 3HAUEHUAX CUIB THMKeCTH. PaccMaTpmBaluch BOJA,
OpPraHHYecKHe N KPUOTeHHBIe HUIKOCTH, a TaKKe KIJTKHe METAJIHL.

Teopus pacnpocTpaHsaercs Ha cayuali KUIIEHNA, KOPJA 0GBEMHAA TEMIIEPATYPA MUAKOCTH

BHAYMTEIIBLHO OTIHYAETCA OT TeMepaTypHl HACHILEHNA.



