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Abstract-A theory is presented to determine the rate of growth of a vapour bubble growing from a 
heated wall in a liquid which is near to saturation temperature. The theory depends on approximate 
assumptions derived from experiments in which thin liquid layers (microlayers) were observed to occur 
under such bubbles, and in which the evaporation of the microlayers contributed significantly to the growth 
of the bubbles. To simplify the analysis it is based on assumptions representative of more extreme situations 
in which the microlayer predominates, extremes which have not previously been explored. The pre- 
dictions of the analysis bear some relation (+ 25 per cent) to the results of experiments with various fluids 
under conditions for which the assumptions are approximately valid. These predictions, with associated 
limitations on the ranges of validity of the assumptions, together indicate conditions under which micro- 
layers may be expected to have significant effects on bubble growth. They also have implications for 
bubble departure size, at standard and reduced gravity. Water, organic liquids, cryogens and metallic 
fluids are discussed. 

The theory is extended to include boiling with liquid bulk temperature differing significantly from 
saturation temperature. 
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group defined in equation (8); 
constant in R = Cltn; 

3 constant in 6, = C2(v1tg) . C, 
is taken to be 0.8 ; 
specific heat at constant pres- 
sure, for liquid, vapour, wall ; 
latent heat of vaporisation ; 
Jakob number defined as 

P! C,l(TvO - Tat). 
P” h ’ 
thermal czductivity of liquid, 
wall ; 
lengths defined in Appendix A ; 
exponent in R = C,t”; 
pressure terms defined in section 
2.1 ; 
Prandtl number for saturated 
liquid ; 
radial coordinate ; 
radius of dried out area; 

radius of bubble ; 
radii defined by equations (21) 
and (22); 
temperature. Suffixes : b = bulk, 
bb = bubble, sat = saturation, 
w =,wall, w0 = initial at wall, 
co = uniform throughout; 
time coordinate ; 
time for microlayer to evaporate 
to radius considered ; 
time for bubble to grow to 
radius considered; 
volume of bubble ; 
volume of vapour evaporated 
from microlayer ; 

Greek symbols 
El, a,, thermal diffusivity of liquid, 

wall ; 
6, microlayer thickness. Suffix 0 

initial value ; 
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viscosity of saturated liquid ; 
kinematic viscosity of saturated 
liquid ; 
density of saturated liquid, va- 
pour, wall ; 
surface tension ; 
group defined by equation (10) ; 
property group defined by equa- 
tion (11) ; 
thickness of thermal boundary 
layer. 

1. INTRODUCTTON 

THE WORK of many experimenters, summarized 
in ref. [l] has produced evidence in support of 
the earlier prediction that, when a liquid boils at 
a heated wall, a vapour bubble growing at the 
wall will in some cases leave a thin layer of 
liquid (the microlayer) on the wall beneath the 
bubble. An analysis of the hydrodynamics [l], 
has led to a prediction for the thickness of the 
microlayer in terms of the time of growth of the 
bubble, and this prediction lies within +25 per 
cent of the limited observations available. It has 
also been shown [l] that in some cases evapo- 
ration of a microlayer makes a significant 
contribution to the growth of a bubble. There is 
a need to “close the loop” in the sense of pro- 
ducing a theory incorporating hydrodynamics 
and thermodynamics to show the effect of 
growth rates on microlayer formation and vice 
versa. For a bubble in a given situation a step- 
by-step method has been devised [l] to do this, 
but it is the aim of the present paper to close the 
loop by simple analytic expressions which 
indicate whether a microlayer forms and whether 
it has appreciable effect on the growth of a 
bubble and heat transfer. 

To maintain the desired analytic simplicity 
while covering the wide range of conditions 
under which boiling may occur, some approxi- 
mate assumptions have been made. Of course, if 
enough assumptions are made, any problem 
can be “solved”. The aim is to make assump- 
tions which are sufficiently accurate over a 

useful range. It is hoped that this aim has been 
achieved here by selecting assumptions based 
on approximations which are valid for the 
experiments described in ref [l], in which 
microlayers were observed. They are mainly 
extreme assumptions, whose validity is confined 
to the extreme cases in which the microlayer 
predominates. However, it can be useful to 
analyse such extremes and this one had not 
previously been explored. Using results from 
the extreme case, the analysis is continued to 
deal with cases in which the microlayer does 
not predominate. 

Experiments reported [l-3] do not conform 
strictly to the extreme assumptions, but the 
results bear some relation to the predictions of 
the analysis, as discussed in section 5 below. 
From these predictions and the associated limi- 
tations on the ranges of validity of the assump- 
tions it has been possible to derive criteria for 
conditions (broadly, low pressure) under which 
the microlayer may be expected to have signifi- 
cant effects on bubble growth. They also have 
implications for bubble departure, at standard 
and reduced gravity. Water, organic liquids, 
cryogens and metallic fluids are discussed, but 
the opportunities to compare theory and obser- 
vation are limited. 

2. BASIS FOR ANALYSIS 

The study is primarily concerned with pool 
boiling with individual bubbles growing effec- 
tively in isolation in an otherwise stagnant 
liquid, reaching sizes greatly in excess of the 
thickness 8, of the thermal boundary layer 
defined as 

8 
T 

= kXT, - Tb) 
mean heat flux’ 

For such bubbles, heat from the thermal 
boundary layer does not contribute much to 
bubble growth, for reasons discussed in Appen- 
dix A2 Hence the temperature distribution in 
the thermal boundary layer and the (related) 
waiting time between bubbles are not considered 
in the primary argument. Smaller bubbles 



MICROLAYER AND BUBBLE GROWTH IN NUCLEATE POOL BOILING 917 

growing within the thermal boundary layer are where (dp/d7’),, is the slope of the saturation 
discussed at the end of Appendix A2 line on the p, T chart at system pressure. 

The analysis is initially based on hemi- 
spherical bubbles. The shape of bubbles growing 
near a wall has been observed and discussed by 
Johnson et al. [4] in terms of the relative 
magnitude of the effects of inertia, viscosity and 
surface tension. They found that the faster- 
growing bubbles were nearly hemispherical. 
Bubbles of other shape are discussed later. 

The analysis assumes the formation of a 
microlayer of thickness in accordance with the 
hydrodynamic argument and supporting ob- 
servations reported in [l]. 

The five terms P,, Pi, P, P, P, cannot readily 
be linked in any one equation, but their relative 
sizes indicate the relative importance of the 
corresponding effects. Comparison of sizes is 
simple in some cases, particularly for stationary 
bubbles, in which P, P, are zero, and P,, P, P, 
can be evaluated. In discussions of nucleation, 
the temperature of the bubble T,, is assessed by 
some means and compared with the saturation 
temperature at the pressure in the bubble, which 
is often written as 

- 20 fdT\ 

2.1 Definitions 
If the forces of inertia and viscosity in the 

vapour are negligible compared with those in 
the liquid, then the pressure of the vapour in the 
bubble is nearly uniform. Bubble growth is then 
determined by the effect of that pressure on the 
motion of the surrounding liquid. For the 
purely radial motion arising with a spherical 
bubble in an infinite mass of liquid with negli- 
gible body forces, the “extended Rayleigh 
equation” applies. It has been used by many 
writers in the form which states that the pressure 
in the bubble exceeds the pressure at infinity by 

This can be combined with the equation for 
conduction of heat in the liquid to deduce the 
rate of growth of a bubble in an infinite super- 
heated liquid [S]. 

In [l], Appendix D discusses the application 
of these terms, respectively called Pi, P, P, to 
the growth of a bubble near a walI In addition 
a term P, (= (pl - p,) gR) is introduced there to 
represent the effect of buoyancy due to gravi- 
tational body force. Here in addition it is con- 
venient to consider another term Pa defined by 

p, = VW, - L,) g, ( >,, 

Comparing this with Tbb is a matter of 
comparing 20/R (which is P,) with 
(T,, - T,,,)(dp/dT),,, (which is some fraction of 
P,, depending on the assessment of Tbb). Simi- 
larly comparison of P, and P, indicates whether 
the bubble will be close to spherical shape or will 
be greatly affected by gravity. Discussion of the 
interaction of buoyancy and surface tension 
forces leading to equilibrium or lift-off can be 
in terms of P, and P,, with other factors arising 
from bubble shape and contact angle. 

For the present problem, the relative sizes of 
all five terms are significant. 

2.2 Assumptions 
The bubbles of toluene on glass reported in 

[I] and [6] suggested a set of assumptions 
which can form the basis for establishing an 
approximate analysis, leading to a prediction 
for bubble growth rate. The assumptions used 
can then be investigated in the light of the 
analysis. 

(1) During most of the growth phase for the 
toluene bubbles reported in [l], the following 
inequalities hold : 

p,>pi; pI>P,; Pi>P,; Pi>P,. (1) 

For a typical inequality the ratio of the two 
quantities on opposite sides was in fact of order 
five, but to provide a basis for simple analysis it 
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was decided to investigate the effect of assuming 
that each inequality indicated a ratio of several 

2.: >> 
IC 

(evaporation rate) (4) 

orders of magnitude. Instead of P, > Pi, etc, it curved 
surface 

is assumed that P, % P, 
(2) During most of the growth phase for the 

3. either (a) T,, - T,, 9 T,, - T, 

toluene bubbles, the rate of growth of a bubble or (b) T,, - T,, + T, - T,,,. : 
is not very different from the rate of evaporation 
of the microlayer, provided the bulk liquid is 3. ANALYSIS 

nearly at saturation temperature. It was found For the typical bubble shown in Fig. 1 the 

convenient to express this as : rate of growth is assumed to be of the form 

rate of growth of bubble > rate of evaporation/ 
condensation on the curved surface of bubble 

dT/, 
ordt’ ci evaporation rate (2) 

curved 
surface 

and again the > sign is tentatively replaced by 
9 although again this is not fully justified for 
the toluene bubble. 

(3) During evaporation of the microlayer 
under the toluene bubbles, the temperature of 
the glass wall fell by an amount comparable 
with the initial wall superheat, T,, - T,,,. How- 
ever, many other combinations of fluid and wall 
material will come close to one or other of the 
two extreme categories: either a poorly con- 
ducting liquid on a highly conducting wall, in 
which case the wall temperature wih remain 
nearly constant during the evaporation period, 
or at the other extreme a highly conducting 
liquid, in which case the wall temperature will 
soon fall nearly to the saturation temperature. 
These two extremes are much simpler to 
analyse than the intermediate case represented 
by toluene on glass. The two extremes are 
therefore taken as alternative bases for the 
analysis, namely : 

(a) T,, - T,,, b T,o - Tk 

(b) T,, - T,, B T, - Tsat 

To collect the assumptions together : 

pi % P, 
1. P, B P,; pi + pg 

pi % pp 1 

(3) 

Bubble surface 

at time I 

Rc,. 1. Hemispherical bubble with microlayer 

R = C,t” as suggested by many experimenters, 
and the object of this analysis is to determine 
C, and n. 

The initial thickness of the microlayer at 
any point (radius r) is taken from [l] to be 
6, = CJqt,)* where t, is the time for the bubble 
to grow to r, i.e. t, = (r/C,)‘l” and C2 is a 
constant, taken to be 0% 

If at time t the microlayer has completely 
evaporated within radius r, then the volume of 
vapour which has been produced by evaporation 
of the microlayer up to time t is 

V, = :{[&,2rcrdr + I(&, - 6)2nrdr} (5) 

r, 

where S is the remaining thickness of microlayer 
at the typical point r at time t. This can be 
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derived from the equation for conduction properties alone. For many non-metallic liquids 
through the microlayer. Neglecting the thermal boiling with typical wall superheat, we find 
capacity of the microlayer, as in ref [l], this 
equation is : l ~ 1 C,,(T,, - GJr) 1 - 

C: h, Pr; 
(12) 

da 
plh,gz = I 6 

_ k T, - L (6) Hence, taking 4 i $ and writing 

in which we can take T, = T,, for a highly con- 
ducting wall (assumption 3(a) above). The 
equation can then be integrated to give 

62 _ 62 = 2 wwo - T,,) 
0 

Plhf!J 
0 - tg) (7) 

in which C&t, can be written for 8; and then t 
and t, can be replaced respectively by (R/C,)“” 
and (r/C,)“” to give an expression for 6 in terms 
of I, R and fluid properties. The ratio (r,/R) can 
be obtained by setting 6 = 0. 

Substituting for 6 and I, in equation (5), then 
integrating and collecting some terms together, 
we obtain : 

in which B involves C2, n, (T,,,, - Tsm) and fluid 
properties, but is independent of R and C1. 

But, by assumption 2 above, this must be the 
same as the volume of the bubble, which is 
GnR3 (a factor (1 - pV/pr) enters here if the 
microlayer is counted as part of the bubble). 

Hence n = 4 and C1 = B, so R = Bt*. 
Evaluating B with n = f we obtain 

(9) 

where 

P C KLo - LJ Ja=-I p 
P” hf!7 

R + $$J$)+ 
2 1 

+ 2.5 2 (v,t)+ 
1 

(13) 

(14) 

or, in terms of the thermal diffusivity of the 
liquid, tll 

(15) 

The condition (12) can be shown to imply 
re 4 R. Equations (13) to (15) can be obtained 
by integrating heat flux, taken as {k,(T,, - 
T,)/6} with respect to time and base area with 
r, = 0 (i.e. neglecting occurrence of dry out) and 
also regarding 6 as constant at its initial value, 
C2(vltg)*. In that integration the two latter 
approximations are partially counterbalancing, 
and the condition for validity is not readily 
assessed. 

Using assumption 3(b) above in place of 3(a), 
the argument proceeds along similar lines, but 
in place of equation (7) with T, assumed 
constant at T,, we take it instead that heat flow 
into the microlayer is governed by the equation 
for heat conduction through the wall, assuming 
T, falls rapidly to T,,,. Using [7] this gives : 

where which leads to 

vhp ph II/= lfgv = “--“Pr,. (11) 
R ~ 1 CpwKvo - LJ pw 

k, PI C&l, 
* IT+ h v fe 

- j- (a& 

(17) 
The quantities 4 and $ are each of dimensions i 1.12 

of temperature, and I+G is a function of fluid 
Ja (a&)*. 
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The absence of C, from this equation may be 
surprising, until it is realised that, as with the 
previous case, we normally have R % re, hence 
the microlayer does not dry out except over a 
small central area. Over the remaining area, the 
heat flow is not affected by &,.according to 
assumption 3(b). 

These expressions for bubble growth can be 
extended as discussed in Appendix A2 to allow 
for significant evaporation from the curved 
surface of the bubble as well as the microlayer. 

4. COMPARISON WITH SPHERICAL BUBBLE 
IN INFINITE LIQUID 

The discussion so far has predicted the rate 
at which a hemispherical bubble will grow in a 
saturated liquid, due solely to evaporation of a 
microlayer from a wall, assumed highly con- 
ducting in the first instance (assumption 3(a)). 
It is of interest to compare this with the rate of 
growth predicted by Striven [5] for a bubble 
growing with spherical symmetry in an infinite 
liquid initially at uniform temperature T, 
(> T,,,). In principle the two cases are very 
different, but nevertheless the latter has been 
applied in the past to some cases of bubbles 
growing at a wall, where it may now be felt that 
a microlayer would be present. 

For non-metallic fluids in our range of 
interest, Striven [5] arrives at the expression :- 

(18) 

For many non-metallic fluids at normal wall 
superheats the first bracket lies between 05 and 
2.0. The second bracket differs from the ex- 

pressions for R in equations (13)-(15) only in 
having T, in place of T,,. 

Hence if Striven’s expression equation (18) 
above for growth of spherical bubbles in an 
infinite fluid initially at temperature T, is 
applied to a hemispherical bubble growing in a 
fluid initially at T,,, on a highly conducting wall 

at TL then for many non-metallic liquids, 
provided T,, is written for T, the answer so 
obtained is roughly similar to that obtained by 
microlayer arguments in this paper, equation 
(14), although the mechanism and theory are 
quite different. 

5. COMPARISON WITH EXPERIMENTAL 
RESULTS 

Many experimenters have reported observa- 
tions of bubble growth rates. Of those known to 
the author, a limited number from [l-3, 61 are 
applicable, in the sense that the inequalities of 
equation (1) hold (as single inequalities > not 
%-) during most of the growth phase. 

It is to be expected that the toluene bubbles 
of [l] and [6] are applicable, since the in- 
equalities were based on them. However, there 
is the difficulty that the wall temperature is 
neither nearly constant at T,, as required for 
inequality 3(a) nor nearly constant at T,, as 
required for inequality 3(b). Assumption 3(a) is 
adopted, using for T,, a mean value of T, based 
on averaging the observed value of (T, - T,,) 
throughout the growth period and across the 
base area of the bubble. The prediction of 
equation (14) is then within +25 per cent of the 
observed growth of the bubble. 

Some bubbles reported in [3] are applicable, 
provided again the wall temperature can be 
assessed. The wall in these experiments was a 
thin strip of zirconium, 0.25 mm thick. For 
organic liquids, zirconium acts as a highly 
conducting wall, so assumption 3(a) applies, but 
the finite thickness will affect heat flow after a 
time of the order of (thickness)‘/cr, which is 
approximately 5 ms. Hence the wall temperature 
is taken to be constant at its reported value, for 
growth periods of up to 5 ms. 
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For all applicable bubbles from [l], [3] and 
[6] bubble growth is well represented by R cc t*. 
Experiment and theory are therefore con- 
veniently compared in Fig. 2, which shows the 

v I I I I I I 
0 O-02 0.04 0.06 008 O-10 042 

z+ from equotion(l4), m/s”’ 

FIG. 2. Comparison of observed and predicted values of 
(radius)/(time)* 8-toluene [6]; A-acetone [S]; C- 
carbon tetrachloride [3] ; M-methanol [3] ; P--n-pentane 

[3] ; T-toluene [3]. 

observed value of (radius)/(time)* in m/Q for 
the parabola of best lit during the growth phase, 
plotted linearly as ordinate against the theo- 
retical value of (radius)/(time)* derived from 
equation (14). Where several bubbles are re- 
ported under nominally identical conditions, 
Fig. 2 shows the range of values of R/t* observed. 
These graphs could have been presented in 
dimensionless form by dividing by either v) or 
at but there seems no clear reason for choosing 
one or the other. 

The points in Fig. 2 derived from [6] lie close 
to the 45” line. The points from [3] lie typically 
some 25 per cent below that line. However, in 
[3] the authors give an equivalent bubble 
diameter, determined by a method (discussed 
in appendix B below), which suits their aims, but 
would lead to an underestimate of radius if the 
bubble were hemispherical. The extent of the 
underestimate depends on the shape of the 

bubble, and that changes during growth, but in 
early stages it is likely to be of the order of 30 
or 60 per cent. Increasing their results by 45 
per cent would bring them closer to the 45” line, 
then in most cases the 45” line would lie within 
the scatter among results in [3] under nominally 
identical conditions. Exceptions to this occur 
with the slower growing bubbles, possibly 
because they were also small, and the thermal 
boundary layer might have an effect, as discussed 
in Appendix A2. 

In view of the extreme assumptions and the 
difficulty in determining T,, this agreement is 
regarded as satisfactory, at least for the main 
purpose of the present work, which is to provide 
a basis for assessing circumstances in which the 
microlayer is or is not important. The assessment 
proceeds partly by reconsideration of the 
underlying assumptions, and introducing further 
comparison with experiment, for bubbles classed 
as inapplicable above. 

6. RECONSIDERATION OF ASSUMF’TIONS 

6.1. Analysis 

The assumptions l-3 of equation (4) can now 
be re-cast in more convenient form. Details of 
the algebra are given in appendixes Al-A3 
respectively, but results can be summarised as 
follows : 

(1) For assumptions 1 expressions for A, # 
can be derived from equation (9) expressed in 
terms of R by use of equation (9) and substituted 
into Pi etc. 

(2) For assumption 2 an expression is de- 
veloped in Appendix A2 for the growth of a 
bubble due to the two mechanisms of evapora- 
tion of microlayer and evaporation at the curved 
surface provided the bubble radius is much 
greater than &.. From this a condition is 
deduced that the former mechanism predomi- 
nates. 

(3) For assumptions 3(a) and (b) expressions 
for the fall in T, can be compared with (T,, - 

T,J. 
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If assumption 3(a) is adopted, the complete P, 9 Pi fails. Below and to the right of the 
set of assumptions can be expressed in terms of region, the conditions 
(T,, - T,,,) as follows : 

2. 

3(a) 
h k,p,C 1 TWO - T $. 3lfsp- sat 
C,i kwp,~,w 

where the characteristic lengths L, L,, L, 
involve only the properties of the fluid and the 
local gravitational acceleration g, as defined in 
Appendix A. As noted earlier, (Two - T&b, i 
Ja/Pr. 

Corresponding expressions which apply when 
assumption 3(b) is used in place of 3(a) can be 
derived similarly. 

In this form the assumptions can be shown 
graphically as defining regions on a chart of 
system pressure against initial wall superheat 

(Go - T,) for any given bubble radius R and 
any fluid-wall combination and bulk tempera- 
ture. This is done in Fig. 3 for R = 1 mm for 
water boiling on copper at bulk subcooling 

Pi S p, 

Pi S pg 

fail. Further below the other conditions fail. 
For different values of R the regions he in 

different positions. The positions are easily 
establish~, but the figure becomes complicate, 
making this an inconvenient method of visua- 
lising the problem. Instead it is more convenient 
to re-cast again the conditions principally in- 
volved, namely : 

pi 9 p, 
pd 9 piQ pig p 

4 

in the form: 

R 6 L, 

1 (21) 

1.3 degC. The conditions are all met in the Or 
cross-hatched region. In the shaded region 
above and to the left of this, the condition (221 
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0.11 I I / I I I I I 

o-01 0.1 I IO 100 

Triple point 
Pressure, otm 

Critical pressure 

FIG. 3. Graphical representation of equation (20) for water boiling on copper, with bulk subcooling less 
than 1.3 degC. All inequalities hold (Y not &) inside cross-hatched area, with R = 1 mm. 

which can readily be applied to any specified 
fluid and operating pressure and wall tempera- 
ture. 

6.2 Consideration of inequalities in terms of 

R,, Ri,, Rig 
The inequality Rdi $ R is equivalent to 

p, 9 pi 

or (Two -- T,,,) g 
0 

$ p,(Rx + sk2) 
SUf 

or (T,,,, -- T,,,) $- p,(Ri + $A”) 

implying that the change in saturation tempera- 
ture due to inertia stresses is much less than the 
wall superheat. This is necessary if the tempera- 
ture at the top of the microlayer (T,,,) is to be 
put equal to Tw If the inequality fails, then the 
temperature of saturated vapour at the pressure 
in the bubble is appreciably greater than T,, so 
Th, is appreciably greater than Twt, so con- 
duction of heat through the microlayer is 
reduced and bubble growth is slowed. 

The inequality inevitably fails when the bubble 
is very small, but for many cases (including 
those reported in Fig. 2) Rdi is small compared 
with the maximum radius of the bubble, so 
the inequality holds (> if not 9) during most 
of the time the bubble is growing. The effect of 
early failure appears to be slight, possibly 
because Rdi is of order 0 T hence the early reduc- 
tion in growth rate is partly counterbalanced by 
evaporation due to the superheat in the thermal 
boundary layer, as discussed in Appendix A2. 

For some cases reported in [3] R,i is several 
mm, which is an appreciable fraction of the 
maximum radius of the bubble and well in 
excess of &.. For those cases the present theory 
implies that bubble growth is slowed for an 
appreciable part of the growth period. Never- 
theless, it still seems that a microlayer will form, 
although the equations governing its evapora- 
tion will be different. A partial analysis is given 
in Appendix B, and that predicts a linear growth, 
with R cc t. A few experimental observations 
are available, permitting comparison subject to 
reservations discussed in Appendix B. As shown 
there, the comparison is promising. 
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The inequality R 6 Ri, is equivalent to 
Pi B P,, implying that inertia stresses greatly 
exceed the stress due to surface tension (20/R). 
The inequality fails in due course as a bubble 
grows, then surface tension stresses predominate 
over inertia stresses and the bubble tends to 
round off towards spherical shape, from its 
original hemispherical shape. It may seem 
strange that surface tension should emerge as 
the predominant force when the bubble grows, 
since P, is in fact falling (as R-l). However, Pi is 
falling faster (as Re2) so P, eventually pre- 
dominates. Matters are complex, but from 
photographs in [2] and [3] it appears that even 
when the radius is well in excess Of Ri, the bubble 
still has an appreciable area of flat base in 
contact with the wall. Nevertheless, the rate of 
growth of that base radius is much below the 
rate implied by the theory above, hence the 
microlayer is presumably thicker and of smaller 
plan area. Both of these changes will reduce the 
contribution of the microlayer to bubble growth 
beyond R, 

This case is illustrated by one set of bubbles 
from [2] and two from [3], for each of which 
R, lies between 0.3 and 0.4 mm The observed 
growth curves are reproduced as Figs. 4(a), (b), 
(c), on each of which the prediction of equation 

20 

NE I5 I 

N- 

“: 
0 
B 

xx oo 

I” 
o-2 I”” 

,g 6) 

k I I 1 I I 

0 2 4 6 8 IC 

Time, ms 

x 

I Eauation (14) 

Time, ms 

I lx 0 0 I 

(a) 

V I I I I I 
0 2 4 6 8 IO 

Time, ms 

FIG. 4. Observed growth rates compared with equation (14) 
for bubbles having &., 0.3 mm to 0.4 mm (a) Water at 1 atm 
[2], (b) n-pentane at 0.69 atm [3]; (c) methanol at 052 atm 
[3]. Scatter among nominally identical tests is indicated 

by x (maximum) 0 (minimum). 

(14) is also shown. The first few frames of each 
tine film are very significant, and as far as can be 
judged from them, the growth in Figs. 4(a) and 
(b) is initially in accordance with equation (14), 
up to a radius a few times Rim after which there 
is a marked change to a slower growth, bearing 
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no relation to equation (14). In Fig. 4(c) growth 
is in accordance with equation (14) for a much 
longer time, suggesting that some other factor 
may be significant. 

The rounding off which follows when R 
exceeds R, may also lead to a tendency for the 
bubble to lift off the wall, a tendency which is 
absent if the bubble remains hemispherical. 
(section 5.5 of [ 11). This tendency will be opposed 
by the action of thermocapillarity, according to 
[8]. Consideration of Ri, may therefore provide 
a criterion for bubble departure, even in the 
absence of gravitational effects, and this is 
discussed below (section 6.3). 

In some cases (broadly, at high pressure) R, 
is very small, of the order of lO-‘j m At such 
small sizes the bubble is usually deep in a 
thermal boundary layer. Its growth is thus much 
influenced by superheat in the surrounding 
liquid causing evaporation at the curved surface 
in addition to evaporation of the microlayer. 
The matter is discussed in Appendix A2, where 
it is shown that, while R < &., growth rate is 
substantially faster than that used to establish 
equation (22). Since R, a (growth rate)4 this 
suggests that a bubble deep in the thermal 
boundary layer will not round off until R greatly 
exceeds R, as determined from equation (22). 
However, after the bubble has grown well 
through the thermal boundary layer and evapo- 
ration from the curved surface has fallen off, 
then microlayer evaporation is not fast enough 
to prevent the bubble from rounding off. Hence 
the growth and final size of such bubbles will be 
determined more by the thickness of the thermal 
boundary layer. 

The way in which bubbles round off during 
growth has been reported and discussed by 
earlier experimenters, often in terms of variation 
of the apparent contact angle at the apparent 
triple interface where the outer edge of the 
bubble appears to meet the wall. If a microlayer 
is present, this is not a true triple interface, but 
an apparent “corner” on the bubble at the outer 
edge of the microlayer. However, some equations 
which have been used, such as force balances 

based on surface tension and contact angle, can 
still be applied, provided it is recognised that the 
force is not acting directly on the wall but is 
instead transmitted to the wall by local variation 
of fluid stress near the “comer”. 

The inequality R 4 Ri, is equivalent to Pi % 
P, implying that inertia stresses greatly exceed 
the hydrostatic head due to one bubble radius 
@gR). The inequality fails in due course as a 
bubble grows, and buoyancy forces then become 
significant compared with inertia stresses, so 
there is a tendency for the bubble to move off. 
Nevertheless, to judge from data in [3], that 
failure does not cause any immediate change in 
growth pattern. Instead the radius continues to 
grow in accordance with equation (14) until it is 
several times Rig 

6.3 Bubble departure 
Consideration of Rim R, in section 6.2 above 

suggests that as the radius grows beyond either 
of these values there is an increasing tendency 
for the bubble to depart. If the smaller of R, R, 
is less than the thickness OT of the thermal 
boundary layer, then as discussed in 6.2 above 
and in Appendix A2, the theory leading to Ris, Rig 
fails, and must be replaced by one allowing for 
the thermal boundary layer. In that, eT is likely 
to emerge as the stronger influence on bubble 
growth and final size. 

Many experimenters have reported on the 
boiling of water, giving the sizes of the bubbles 
of steam as they leave the heater surface. 
Summaries have been prepared by Cole [9] 
and by Cole and Shulman [lo], plotting 
departure size against, for example, system 
pressure irrespective of other conditions such as 
wall superheat. Such graphs show a trend, 
broadly (pressure)-” with n = 0.6 or 1.0 and a 
wide scatter band. The values of R, and Rig 
from Table 1 (whichever is the smaller) for 
pressures of 0.1 and 1.0 atm and wall superheat 
10°C are consistent with the trend and within 
the scatter band, but at pressures above 1 atm 
the observed bubble sizes greatly exceed the 
smaller of Ri, Rig suggesting again that other 
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Table 1. Values ofRdi, R,, R, for saturated boiling, equation (22) 

Fluid 
Pressure L, - L R,i 

(atm) (degc) (mm) 

Toluene 0.1 
Water 0.1 
Water 1.0 
Water 10.0 
Oxygen O~c015 
Oxygen 1.0 
Nitrogen 0.124 
Nitrogen 1.0 
Helium 0.05 
Helium 1.0 
Hydrogen 0.07 
Hydrogen 1.0 
Acetone 0.29 

20 
10 
10 
10 
5 
5 

5 
5 

27.2 

0.70 
2.5 
0.03 
00003 

25.9 
oQO12 
0.042 
00008 
0.073 
oQoO3 
@061 
oGoO2 
0.13 

Carbon tetrachloride 0.18 28.9 0.15 
n-Pentane 1.0 17.2 0.003 
n-Pentane 0.71 27.7 0,012 
Methanol 0.523 20.0 0.016 
Methanol 040 20.0 0.029 
Methanol 0.27 26.7 0.10 

4, 43 
(mm) (mm) 

80.4 7.9 
229 15 

0.30 1.55 
0.003 0.11 

lo4 36.4 
oCG3 0.19 
0.85 1.34 
0002 0.17 

474 5.84 
0.18 0.32 

10.19 3.72 
0.002 0.23 

14.1 4.4 
10.5 3.26 
0.02 0.46 
0.39 1.2 
0.31 1.19 
0.75 1.61 
8.18 3.58 

mechanisms are involved, possibly involving &. 
or thermocapillarity. The dynamics of bubble 
growth and departure are complex, and the 
main contribution of the present paper to this 
problem is to suggest that at low pressures the 
microlayer may be one of the factors. Further 
study involving reduced gravity may help to 
clarify problems of bubble dynamics and the 
microlayer. Conversely, consideration of R, 
and Ri, may throw light on the reported experi- 
ments showing that heat flux in nucleate 
boiling is nearly independent of gravity in some 
cases, [ll, 121. Where low pressure is combined 
with low gravity, as in some space applications, 
R, and Ri, may both be very large, so an 
understanding of the microlayer may be very 
important. 

7. SUMMARY AND APPLICATION TO 
PARTICULAR FLUIDS 

7.1 Non-metallic fluids 
For saturation boiling from a highly con- 

ducting wall, the range of applicability of the 
present theory is indicated by the values of 
R,, Ri, Ri, and these are tabulated in Table 1 

for some fluids and conditions of interest. All 
fluids differ in detail, and wall superheat is an 
important factor, but it can be seen that the 
required conditions (broadly R,, < 0.3 mm, and 
R,, R, each > 5 mm) are generally obtained 
with the non-metallic fluids listed when the 
pressure is between 0.1 and 0.5 atm. Because 
many industrial applications involve boiling of 
water at pressures well above 1 atm, Table 1 
includes values for water at 10 atm. TI. : value 
of R, is then very small (3 x 10m6 m) and this 
suggests that, as discussed in section 6.2, the 
bubble will tend to round off at small size, a 
few times &.. Hence for water at more than 
about 1 atm, the thermal boundary layer has 
greater effect on bubble growth than microlayer 
phenomena. Table 1 also shows data for boiling 
of cryogens at atmospheric pressure and 5°C 
wall superheat, when R, is generally small, 
indicating again that the bubbles will tend to 
round off at small sizes. Data are also included 
for boiling of cryogens near the triple points 
(precise properties at the triple points could not 
be located in all cases). Where triple point 
pressure is well below 1 atm, it seems that 
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microlayer phenomena can be significant. For 
nitrogen the triple point is at about l/8 atm, so 
boiling cannot be strongly dependent on micro- 
layer phenomena. For carbon dioxide the triple 
point is at 51 atm, and microlayer phenomena 
cannot become significant. 

For subcooled boiling from a highly con- 
ducting wall, the effect of conduction to the bulk 
liquid will complicate the picture, though it can 
still be analysed as discussed in Appendix A2. 
It is shown there that such conduction has 
little effect if expression 2 of equation (20) holds. 
When this is evaluated for the same fluids, with 
Pr I z 6, it requires 

) L, - Tb I e 0.5 (T,, - L) 

so bulk subcooling is to be well below wall 
superheat. This is often met, and the earlier 
paragraph then applies. 

For saturation boiling from a moderately 
conducting wall, the effect of falling wall 
temperature will complicate the picture, de- 
pending on the ratio of the values of the product 
(k&J for liquid and wall, as shown by ex- 
pression 3 of equation (20). Water has a com- 
paratively high value of (k&J, so the complica- 
tion arises unless the wall is a very good con- 
ductor like copper, hence Fig. 3 was calculated 
for copper. For the other non-metallic fluids 
discussed, (kpC,) is lower by a factor 6 or more, 
so other metals such as mild steel are sufficiently 
highly conducting for the simple theory to apply. 
At the other extreme, with water boiling on 
glass, the analysis should be based on assump- 
tion 3(b) and equation (17). 

The present theory is thus relevant to many 
boiling situations at sub-atmospheric pressure. 
Some de-salination plants involve boiling at 
such pressures, but usually from a flowing 
stream not from a heated wall. Some situations 
of cryogens boiling in space vehicles may be 
applicable. 

7.2 Metallic liquids 
In studying boiling of metallic liquids such as 

sodium there are obvious experimental dilli- 
culties, and no data seem to be available on 
bubble growth or surface temperature. However, 
the hydrodynamic arguments of [l] leading to 
initial microlayer thickness do = Cz(vItJ3 should 
still be applicable, if the manner of growth of 
the bubbles were known. In the thermodynamic 
arguments of the present paper, assumption 3(b) 
must be substituted for 3(a), leading to equation 
(17). The form of assumption 2 then differs from 
that in equation (20) and will seldom be met, as 
it places a close restriction on the subcooling or 
superheating permitted in the liquid around the 
bubble. Such a restriction is particularly un- 
realistic in view of the thick thermal boundary 
layers encountered with sodium. These dilficul- 
ties reflect the fact that, although a microlayer 
may form, it will not be so important for heat 
transfer with sodium as it is for the cases con- 
sidered earlier which involved less conducting 
liquids on fairly well conducting walls. For 
those cases, any microlayer constituted an area 
where heat was transferred rapidly from the 
wall, at a rate often greatly exceeding that for 
transfer across the curved surface of the bubble. 
For the sodium, by contrast, the heat flow across 
the curved surface of the bubble will be of the 
same order as that through the microlayer, 
assuming the sodium and wall both have 
similar conductivity and initial superheat. The 
microlayer is therefore unlikely to cause more 
than a fractional increase in heat flow. 

8. CONCLUSIONS 

For many non-metallic fluids boiling from a 
heated wall at pressures well below 1 atmosphere, 
the assumptions listed in equation (4) will be 
valid during much of the growth period. In that 
case a microlayer can be expected to form and 
virtually dominate later stages of growth of 
bubbles, when the radius greatly exceeds f& and 
growth continues in accordance with : 

R = z TWO ; Tti (v# + 2+vlt)+. 
C, 

(14) 
I 
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Limitations to the validity of the assumptions 
are summarized in Table 1 and equation (22). 
For boiling at higher pressures the microlayer 
may still occur, making contributions to bubble 
growth and heat transfer, but the microlayer 
will not on its own cause the bubble radius to 
grow much beyond 8,. 

The expressions derived by Striven [5] for 
bubble growth in an infinite liquid initially at 
uniform temperature T, gives answers numeric- 
ally similar to the above expression if T, is put 
equal to T,,. The physical situations, theory 
and analysis are all very different, but this 
numerical similarity is noteworthy because ex- 
pressions such as Striven’s have been used by 
others with moderate success in theories pre- 
dicting bubble growth without allowing for the 
microlayer although it now seems that micro- 
layers were present in some cases. 

A bubble growing at a wall in a liquid which 
is not at saturation temperature will be affected 
by microlayer evaporation and evaporation 
(condensation) at the curved surface. The net 
growth is predicted by adding the radial growth 
(collapse) rates appropriate to the two separate 
mechanisms. 

The contribution of the microlayer to the 
growth pattern may affect departure of the 
bubble, because 

(1) As the bubble grows beyond R, surface 
tension forces have increasing influence, tending 
to make the bubble adopt a spherical shape, 
which may introduce dynamic forces tending to 
take the bubble away from the wall. 

(2) As the bubble grows beyond R, (in normal 
gravity) gravitational body forces have in- 
creasing influence, tending to take the bubble 
from the wall. 

Other influences are apparently involved (such 
as thermocapillarity) tending to affect bubble 
departure, or prevent it, particularly for small 
bubbles at high pressures. 

With metallic fluids, microlayers may occur, 
but their effect on bubble growth will be less 
important. 
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APPENDIX Al 

To Develop Expression 1 of Equation (20) 
The five pressure terms P,, Pi, P,, P,, P, are 

(~1 - P,) gR ; 4~ f . 

Using R = C,t* we have 

k = iC,/t* = C:/2R and # = -C1/4t3 

= - Cf/4R3 
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hence 

Substituting 

c _ glvo - LJ 
1- 

c2 dJ 
v) and (T,, - T,,) = AT 

and using the Clausius-Clapeyron relation to 
give 

the live pressure terms are respectively 

@r - P,)BR;$ 

2 

and the inequalities of equation (1) are res- 
pectively 

i I g284 

which reduce to the form given in equation (20) 
if we define 

APPENDIX A2 

Evaporation _i?om Microlayer and From Curved 
Surface 

Basis-neglect of thermal boundary layer 
In some theories of bubble growth the con- 

duction of heat from the thermal boundary 
layer to the curved surface of the bubble is 
taken to be a major or sole factor causing 
evaporation. In their simplest form the theories 
regard the thermal boundary layer as being 
bodily displaced to surround the curved surface 
of the bubble (Fig. 5(a)) and then assess the rate 

(a) (b) 

FIG. 5. (a) Bubble surrounded by thermal boundary layer. 
(b) Bubble growing far beyond thermal boundary layer. 

of conduction of heat to the interface. Such 
theories may be appropriate if the bubble radius 
never grows much beyond tIT (Fig. 5(a)) but they 
are considered inappropriate for bubbles which 
grow to some 10 or 100 eT (Fig. 5(b)). When a 
bubble grows greatly beyond &, the liquid in 
the thermal boundary layer is not added to that 
around the curved surface. Instead it is dis- 
placed radially as shown by the arrows in 
Fig. 5(b). Also, the layer of hot liquid which 
surrounded the bubble as it grew past 8, 
(Fig. 5(a)) must have been subsequently thinned 
out by being spread over a larger bubble 
surface. More rigorous analyses [13], [14] 
allow for these combined effects of liquid 
motion and thermal conduction, but they 
ignore the microlayer. The ultimate aim will be 
the further integration of those theories with 
microlayer evaporation, but here, as elsewhere 
in this paper, the analysis is largely confined to 
an extreme case, for simplicity. Here it is 
assumed that the bubble radius grows far in 
excess of or, hence heat conduction differs little 
from that occurring in a liquid initially at 
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uniform temperature T,. Analysis thus neglects 
the thermal boundary layer, but allows for 
evaporation from the microlayer and evapora- 
tion or condensation at the curved surface of 
the bubble. 

A final paragraph in this appendix considers 
the growth of a bubble while its radius is small 
compared with &.. 

Analysis 
If a bubble grew at rate R = C,t* due solely 

to evaporation at its curved surface when 
immersed in liquid initially at uniform tempera- 
ture T,, then from equations (ll), (12), (19) 

hence 

If instead the bulk temperature is & but the 
bubble radius nevertheless grows at the same 
rate C,t* then the fluid motion is unchanged 
(provided pV 4 pI) so heat flow and vapour 
production are changed by factor (G - T,,)/ 
(T, - T,,) so the volume of vapour caused by 
evaporation at the curved surface while the 
bubble grows to radius R is 

Tb - L 2 

T, - L, 
-gR3 on each hemisphere 

x +R3. 

If a hemispherical bubble grew at rate 
R = C,t* due solely to microlayer evaporation 
with wall temperature TW, then from equations 

(9), (12) 

c 

1 
= J_ T:, - T,a, 

c2 * 
V3 

hence 
W T:,-T,,=C,- 
2v3 . 

If instead the wall temperature is T,, but the 
bubble radius nevertheless grows at the same 
rate C,tf then the fluid motion is unchanged 
(provided p. $ pI) so the microlayer is formed 
with the same initial thickness 6,. The argu- 
ments of equations (6), (7) and (8) still apply, and 
hence from equation (8) with n = : and B 
substituted the volume of vapour evaporated 
from the microlayer is 

I/ = 2n~3 
m 3 

- 

and again $I + $. 
For a hemispherical bubble to grow at rate 

R = C,tt due to the combined effects of the 
two mechanisms, namely evaporation at its 
curved surface from initial bulk temperature T, 
and evaporation from the microlayer on a wall 
at temperature TWO, we must have : 

$R3 = 

hence 

or 

tt 

showing that the radial growth rates (not the 
volumetric rates) are added. If the second term 
in this equation is much larger than the lirst, 
then growth is largely due to evaporation of the 
microlayer. This yields condition 2 of equation 

(20). 
This equation also shows that the expressions 

derived in this paper for saturation boiling 
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(T’ + T,,) can be used for cases in which the 
two mechanisms are both operating, provided 

CL - T,, + {G(3/7+pr3) (Tb - T,,Jl is 
written in place of (T,, - T,,,). 

Eflect of Thermal Boundary Layer on 
Small Bubbles 

Very early in the growth of a bubble its radius 
is small compared with 0, and its lifetime is 
short compared with #/a, (typically 0.1 mm, 
0.1 set for the experiments discussed here). 
These facts imply respectively that the bubble is 
deep in the thermal boundary layer, where the 
temperature of the liquid is nearly T,, and that 
the presence of cooler liquid beyond is hardly 
felt. Hence in the limit of very small size, growth 
occurs under the combined influence of micro- 
layer evaporation and growth in a superheated 
liquid which has effectively uniform initial 
temperature T,,. Writing Tb = T,, in the above 
equation gives : 

+ (1 + 0.78 Pr)) 2.5 g (v#. 
1 

Few data are available for the very small sizes 
involved, but [15] reports experiments with 
liquid nitrogen boiling at a heated surface, and 
gives some data points for bubbles of radius less 
than 28,. The initial growth rate is some 1.4 
times the rate predicted for growth in a uniformly 
superheated liquid at T,,. This is some 20% 
below the rate predicted by the equation above, 
suggesting that the two mechanisms are both 
operating, though not to the extent indicated by 
taking Tb = TWO. 

‘APPENDIX A3 

To Develop Expression 3 of Equation (20) 

Integrating equation (6) we obtain 

and we require the condition that the integral can 
be adequately approximated by ( TWO - T,,,)(t - ts) 
for t, c t < t,. 

However high the conductivity of the wall, 
T, must clearly fall towards T,,, at the end of 
the evaporation period. However, the approxi- 
mation will be adequate provided T, is close to 
TWO for most of the evaporation period. Say 
(TWO - T,) + (TWO - T,,,) for 95 % of the evap- 
oration period. If that is so, then equation (7) 
applies for most of the evaporation period. 
Substituting St = C$,t, in that, and noting 

that 6 = 0 when t = t, we find 

b= *(TWO 
Plhf, 

+. 

Hence the heat flux can be adequately approxi- 
mated during 95 per cent of the evaporation 
period by 

MT,, - Tat) _ K 
6 be - t)* 

where K = {:k,plhf,(TWo - T,,)}%. 
But if such a heat flux is withdrawn from a 

semi-infinite body initially at uniform tempera- 
ture, then from [7] the wall temperature falls by 

r=, 

K 

~~kv~wC,,J’ 

Neglecting t, compared with t, we apply this 
expression and note that the integral can be 
evaluated and is 

2 log [{t& - t))+ + G/(t, - PI 
which has a singularity at t = t,, corresponding 
to the end of evaporation. Discarding the last 
5 per cent of the evaporation’period as discussed 
earlier, t = 0.95t, and the integral is 4.36. 

The required condition can therefore be 
exoressed as 

6; - 62 = __ 2k1 (T, - T,,,)dt 
Plhf, s 

‘g 

I 

K 

(~k,/+&J+ 
x 4.36 < (TWO - T,,). 
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Substituting for K, re-arranging and writing 
4=362/(2n) = 3 yields 3(a) of equation (20). 

APPENDIX B 

Fissure of the Co~~tio~ Pd 9 Pi 

If (‘I& - T&)(dp/dT),, is not greatly in 
excess of pr(R# + $R2) with R = C,tf then the 
pressure pb in the bubble differs signi~~antly 
from system pressure, and the analysis given 
above must be discarded because it was based 
on taking the temperature at the top of the 
microlayer to be T,,. An opposite extreme would 
be to take the temperature in the bubble to be 
equal to T,, hence the pressure in the bubble 
would exceed the system pressure by (T, - T,,) 
(dp,/dT),, and the growth of the bubble would 
be governed by 

vapour being supplied by microlayer evapora- 
tion at the rate necessary to cause this growth. 
If further the wall temperature is nearly constant 
at T,, then 

R# + ;A2 = 2 
which integrates to 

constant 
R2 =2$ R3 . 

The constant of integration could be determined 
if initial values of R, k were available. It must 
apparently be zero if there is to be no singularity 
in R for small values of R. The position is 
obscure and depends on the conditions of 
initiation of the bubble. Whatever the value of 
the constant, the term falls as R - 3. This suggests 
(but does not prove) that when R exceeds its 
initial value by an order of magnitude we can 
write 

until in due course the temperature drop across 

the microlayer becomes significant so pb is no 
longer governed by T,, and the situation is 
closer to that summarised in equation (1). 

The toluene bubbles reported in [l] and [6] 
are not suited to this problem, as they soon 
grew past this phase (R,i typically less than 
1 mm). Some bubbles are reported in [3] with 
water at 50 mm pressure for which R,i is 16 mm, 
suggesting that the theory above should apply. 
Due to the characteristics of the heater, a strip 
of zirconium 0.25 mm thick and 12.7 mm wide, 
some reservations arise : 

(1) The thermal conductivity of zirconium is 
too low for the surface temperature to be 
regarded as constant throughout the growth 
period. 

(2) The thickness of the strip is too low for it 
to be regarded as a semi infinite body for more 
than a few ms. 

(3) The width of the strip is too small for the 
bubbles to grow symmetrically beyond a few 
mm diameter. This was observed by the authors 
of [3] who allowed for it for their purpose by 
defining an equivalent diameter D, assuming 
the bubble to be a prolate ellipsoid. If their 
method of determining D, is applied to a 
hemispherical bubble, it wiI1 yield 

D, = RJ2. 

By confining attention to the first 5 ms of 
bubble growth, reservations 1 and 2 above are 
largely avoided. Further, the bubble is then 
small and unlikely to be distorted by the finite 
width of the strip, so it is assumed that the 
bubble is nearly hemispherical and the bubble 
diameter D, quoted in [3] is in fact about Rl2. 
In that case the prediction is that the bubble 
will at first grow linearly with 

Comparison with the three such bubbles 
reported in [3] relies on some 5 or 7 frames of 
each tine film. As far as can be judged from 
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these, the bubbles do grow linearly for the first In view of the many extreme assumptions 
5 or 7 ms, at rates in the range : underlying the theory, this agreement with one 

1.8 < $ (03 < 2.6 m/s. 
set of three experimental results is not con- 
elusive, and may be fortuitous, but it seems 
interesting. 

R&sum&-On presenteuneth~rieafindedtterminelavitessedecroissancd'unebulledevapeurgrossissant 
A partir dune paroi chauffee dans un liquide qui est voisin de la temperature de saturation. La theorie 
des hypotheses approchees obtenues a partir des experiences dans lesquelles on o observa que des couches 
liquides minces (microcouches) se trouvaient sous de telles bulles, et dans lesquelles l’evaporation des 
microcouches contribuait de facon importante a la croissance des bulles. Pour simplifier l’analyse, on 
l’a fond&e sur des hypotheses representatives de situations plus extrhes qui n’ont pas ete explorees 
auparavant. Les previsions de la theotie ont une certaine relation ( + 25 pour cent) avec les resultats des 
experiences pour divers fluides sous des conditions telles que les hypotheses soient valables de facon 
approchee Ces previsions, en m&me temps que des limitations associ&s aux gammes de validit& des 
hypotheses, indiquent les conditions sous lesquelles on peut s’attendre a ce que les microcouches aient des 
effets importants sur la croissance des bulles. Elles ont aussi des consequences sur la taille de depart des 
bulles, pour une gravim standard et rtduite. On a discute les cas de l’eau, des liquides organiques, des 
fluides.mbtalliques et cryogtniques. 

La theotie est ttndue pour y inclure l’tbullition avec une temperature moyenne du liquide differant de 
facon importante de la temperature de saturation. 

Zusammenfassung-Zur Bestimmung der Wachstumsrate einer Dampfblase, die an einer beheizten Wand 
in einer Fliissigkeit mit amrahemd Sattigungstemperatur entsteht, wird eine Theorie aufgestellt. Die 
Theorie stiltzt sich auf Naherungsannahmen, die aus Versuchen stammen, bei denen das Auftreten dtlnner 
Flilssigkeitsschichten (Mikroschichten) unter solchen Blasen beobachtet wurde und bei denen die Verdamp- 
fung der Mikroschichten massgeblich zum Wachstum der Blasen beitrlgt. Zur Vereinfachung basiert die 
Betrachtung auf Annahmen, die fiir extremere Zustande typisch sind bei denen die Mikroschicht vor- 
herrscht, Extreme die bisher noch nicht erforscht worden sind. Die Voraussagen lassen sich mit einiger 
Berechtigung ( +25 Prozent) auf die experimentellen Ergebnisse fIlr verschiedene Fltlssigkeite bei welchen 
die Annahmen ann;ihemd gtlltig sind, anwenden. Diese Voraussagen zusammen mit den aufgefilhrten 
Einschriinkungen des Gilltigkeitsbereiches der Annahmen weisen auf die Bedingungen hind unter denen 
erwartet werden kamr, dass die Mikroschichten einen bedeutenden Eintluss auf das Blasenwachstum 
haben. Es ergeben sich daraus such Folgerungen filr die Blasenabreissgrosse bei normalem und reduxiertem 
Schwerefeld. Es werden Wasser, organ&he Fhlssigkeiten, Kaltemittel und flilssige Metalle untersucht. 

Die Theorie ist erweitert worden, um das Sieden bei Flilssigkeitstemperaturen zu erfassen, die sich 
wesentlich von der Sattigungstemperatur unterscheiden. 

AaaoTaqlin-llpefino*eHa Teopnn 0npcAeneHnn c~opoc~n pocTa ny3npbKa napa Ha na- 
rpeBaeMOti CTeHKe B H(nnKOCTn, TeMnepaTypa KOTOPOti 6nuaKa K TeMnepaType HaCbIIIIeHnR. 
OHa OCHOBbIRaeTCR Ha npn6JInHteHHbIX AOnymeHnJIX, nOJIyneHHbIX 3KCnepRMeHTaJIbHbIM 
IIyTeM, KOrna nOA TaKMMH ny3bIpbKaMIl Ha6JIIOAaJInCb TOHKne CJIOn ?KnAKOCTn (MnKpOCJIOn) 
II KOrAa IICnapeHne MnKpOCJIOeB 3HaYnTenbHO CnOC06CTBOBaJIO pOCTy ny3bIpbKOB. j$In 
ynpomeHnn aHannna Bpanncb AonymeHnn, xapaKTepHbIe firIn 3KCTpeManbHbIX CaTyannm, 
Korna noMnHnpyeT ~n~p0~nOi. 3Tn cnysau paHee IICCJIenOBaHbI He 6nrna. AHaJInTnneCKne 
paCneTbInaIOTHeKOTOpOeCOBnaneHwe(+ 25%) Cpe3yJIbTaTaMn3KCnepnMeHTOBCpa3JIWIHbIMn 
IflnnKOCTRMII, Ann KOTOpbIX 3Tn nOnymeHnn RBJIRIOTCR npn6JIIUKeHHO CnpaBeAnnBbIMn. 
AKanmTnnecKne pacqeTbI II cBn3aHHbIe c HIIMII 0rpaHnseHna 0 nnana3oHax cnpase~nn3ocTn 
ROnyIIIeHnti nOKa3bIBaIOT, npn KaKnX yCJIOBnRX MnKpOCJIOn MOryT OKa3bIBaTb 3HaWITeJIbHOe 
BJInRHHe HapOCT ny3bIpen.OHn TaKPKe OKa~bIBaIOT BJIRRHne Hapa3Mep ny3bIpbKaBO BpeMR 
OTpbIBa npn 06bFIHbIX II nOHnHFeHHbIX 3HaYeHHRX CnJIbI TRH(eCTn. PaCCMaTpnBaJInCb Bona, 
0praHnsecKae II KpnoreHHbIe H(II~KOCT~,~ TaKme wfnKne MeTannbI. 

Teopnn pacnpocTpanneTcn Ha cnysafi KnneHnn, Korna 06'beMHan TeMnepaTypa %%~KOCTII 
3HanMTenbHO OTJInnaeTCR OT TeMnepaTypbI HaCbImeHnfI. 


